Allelopathic Property of an Invasive Tree Broussonetia papyrifera (L.) LHer. ex Vent in its Introduced Range in Mount Makiling Forest Reserve, Philippines
Marilyn S. Combalicer1*, Mark Bryan A. Carayugan2, and Jonathan O. Hernandez1
1Department of Forest Biological Sciences
2Environmental Forestry, College of Forestry and Natural Resources (CFNR),
University of the Philippines Los Baños (UPLB), College 4031 Laguna, Philippines
*Corresponding author: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Invasive plants are responsible for many adverse ecological and economic impacts on forest ecosystems. These impacts and the emerging concern about protecting and conserving native species against invasive plants necessitate determining the invasive ability of all introduced plants in the country. In this study, the allelopathic property of stem and root of an invasive tree – Broussonetia papyrifera – was analyzed to give insights on important mechanisms underlying its invasive ability in its introduced range in Mount Makiling Forest Reserve (MMFR). Varying concentrations of aqueous extracts of stem and root of B. papyrifera were tested on a native tree, Sindora supa (test plant), to determine its effect on the morphological and physiological characteristics of the test plant. Results showed that the phytotoxicity of allelochemical(s) possibly contained within the aqueous root and stem extracts of B. papyrifera is extract-concentration-dependent. The stem and root extracts of B. papyrifera exhibited both inhibitory and stimulatory effects, which are typical of allelopathic plants. Therefore, one possible important mechanism of B. papyrifera underlying invasibility is its root and stem allelopathic property, posing a serious threat to native plants in the vicinity of MMFR. However, additional studies such as the identification of allelochemical compounds present in B. papyrifera and field trials are recommended. This is to better understand the inhibitory and stimulatory effects of B. papyrifera at the plant community level.
INTRODUCTION
Invasive plant species are responsible for many adverse ecological and economic impacts on forest ecosystems. Once an introduced species enters a plant community, it has the potential to flourish in their new habitat and invade the area, posing numerous threats to native flora and fauna. The emerging concern about protecting and conserving native species against invasive plants necessitates determining the invasive ability of all introduced plants to a particular area, in line with the precautionary principle in ecology. A number of mechanisms have long been reported to elucidate invasive plant species success in an introduced area (Crawley 1987, Pisula and Meiners 2010). Some of these mechanisms include rapid changes in genetics, escape from natural enemies, morpho-anatomical and physiological mechanisms, and life history characteristics (Williamson 1996, Reichard and Hamilton 1997, Ehrenfeld et al. 2001). A couple of studies reported allelopathy as a potential mechanism underlying plant invasion process (Inderjit et al. 2008, Pisula and Meiners 2010). . . . read more
REFERENCES
ABHILASHA D, QUINTANA N, VIVANCO J, JOSHI J. 2008. Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? Journal of Ecology 96(5): 993–1001. doi:10.1111/j.1365-2745.2008.01413.x
AGATHOKLEOUS E, KITAO M. 2018. Ethylenediurea Induces Hormesis in Plants. Dose-Response 16(2). doi:10.1177/1559325818765280
AGATHOKLEOUS E, KITAO M, HARAYAMA H, CALABRESE EJ. 2018. Temperature-induced hormesis in plants. Journal of Forestry Research 30(1): 13–20. doi:10.1007/s11676-018-0790-7
BALDWIN IT, HALITSCHKE R, PASCHOLD A, VON DAHL CC, PRESTON CA. 2006. Volatile signaling in plant-plant interactions: "Talking trees" in the genomics era. Science 3(11): 812–815, 454–455.
BARKOSKY RR, EINHELLIG FA. 1993. Effects of salicylic acid on plant-water relationships. Journal of Chemical Ecology 19(2): 237–247. doi:10.1007/bf00993692
BARKOSKY RR, EINHELLIG FA, BUTLER JL. 2000. Caffeic acid-induced changes in plant-water relationships and photosynthesis and photosynthesis in leafy spurge (Euphorbia esula L.). J Chem Ecol 26(9): 2095–2109.
BARKOSKY RR, EINHELLIG FA 2003. Allelopathic interference of plant-water relationships by para- hydroxybenzoic acid. Botanical Bulletin of Academia Sinica 44(1): 53–58.
BAZIRAMAKENGA R, LEROUX GD, SIMARD RR. 1995. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology 21(9): 1271–1285. doi:10.1007/bf02027561
BLUM U. 1999. Evidence for Inhibitory Allelopathic Interactions Involving Phenolic Acids in Field Soils: Concepts vs. an Experimental Model. Critical Reviews in Plant Sciences 18(5): 673–693. doi:10.1016/s0735-2689(99)00396-2
BOSU PP, APETORGBOR MM, NKRUMAH EE, BANDOH KP. 2013. The impact of Broussonetia papyrifera (L.) vent. on community characteristics in the forest and forest-savannah transition ecosystems of Ghana. African Journal of Ecology 51(4): 528–535. doi:10.1111/aje.12063
BROUWER NL, HALE AN, KALISZ S. 2015. Mutualism-disrupting allelopathic invader drives carbon stress and vital rate decline in a forest perennial herb. AoB PLANTS, p. 7. doi:10.1093/aobpla/plv014
CHAVES N, ESCUDERO JC. 1997. Allelopathic effect of Cistus ladanifer on seed germination. Functional Ecology 11(4): 432–440. doi: 10.1046/j.1365-2435.1997.00107.x
CHON S, NELSON CJ. 2010. Allelopathy in Compositae plants: A review. Agronomy for Sustainable Development 30(2): 349–358. doi:10.1051/agro/2009027
CRAWLEY MJ. 1987. What makes a community invasible? In: Colonization, Succession, and Stability. Gray AJ, Crawley MJ, Edwards PJ eds. Boston, MA: Blackwell Scientific Publications. p. 429–454.
EHRENFELD JG, KOURTEV P, HUANG W. 2001. Changes in Soil Functions Following Invasions of Exotic Understory Plants in Deciduous Forests. Ecological Applications 11(5): 1287. doi:10.2307/3060920
EINHELLIG FA. 1985. Effects of Allelopathic Chemicals on Crop Productivity. ACS Symposium Series Bioregulators for Pest Control. p. 109–130. doi:10.1021/bk-1985-0276.ch008
FERGUSON JJ, RATHINASABAPATHI B, CHASE CA. 2013. Allelopathy: How Plants Suppress Other Plants. Horticultural Sciences Department, UF/IFAS Extension.
HARBORNE JB, WILLIAMS CA. 2000. Advances in flavonoid research since 1992. Phytochemistry 55(6): 481–504. doi: 10.1016/s0031-9422(00)00235-1
HAROUN SA, ABUALGHAITH AS. 2015. Evaluation of the Allelopathic Effect of Aqueous Extract of Zygophyllum simplex L. on Vicia faba L. Plants. Cytologia 80(3): 363–371. doi:10.1508/cytologia.80.363
INDERJIT KMM. 1996. Plant phenolics in allelopathy. Bot Rev 62: 186–202.
INDERJIT KMM, SEASTEDT TR, CALLAWAY RM, POLLOCK JL, KAUR J. 2008. Allelopathy and plant invasions: Traditional, congeneric, and bio-geographical approaches. Biological Invasions 10(6): 875–890. doi:10.1007/s10530-008-9239-9
INDERJIT KMM, MALLIK AU. 2002. Chemical ecology of plants: Allelopathy on aquatic and terrestrial ecosystems. Birkhauser, Switzerland: Springer.
JACKSON JR, WILLEMSEN RW. 1976. Allelopathy in the First Stages of Secondary Succession on the Piedmont of New Jersey. American Journal of Botany 63(7): 1015. doi:10.2307/2441761
KOBAYASHI K. 2004. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biology and Management 4(1): 1–7. doi:10.1111/j.1445-6664.2003.00112.x
KRUSE M, STRANDBERG M, STRANDBERG B. 2000. Ecological Effects of Allelopathic Plants – A Review [NERI Technical Report No. 315]. National Environmental Research Institute, Silkeborg, Denmark. 66p.
KUMAR S, PANDEY AK. 2013. Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal Vol. 2013, Article ID 162750, 16 pages. doi: 10.1155/2013/162750
LAWRENCE JG, COLWELL A, SEXTON OJ. 1991. The Ecological Impact of Allelopathy. In: Ailanthus altissima (Simaroubaceae). American Journal of Botany 78(7): 948–958. doi:10.1002/j.1537-2197.1991.tb14498.x
LI Z, WANG Q, RUAN X, PAN C, JIANG D. 2010. Phenolics and Plant Allelopathy. Molecules 15(12): 8933–8952. doi:10.3390/molecules15128933
LOHMANN M, SCHEU S, MÜLLER C. 2009, Decomposers and root feeders interactively 456 affect plant defence in Sinapis alba. Oecologia 160: 289–298.
MALLIK AU. 1998. Allelopathy and Competition in Coniferous Forests. Environmental Forest Science Forestry Sciences, p. 309–315. doi: 10.1007/978-94-011-5324-9_33
MIERZIAK J, KOSTYN K, KULMA A. 2014. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules 19(10): 16240–16265. doi: 10.3390/molecules191016240
ORWA C, MUTUA A, KINDT R, JAMNADASS R, ANTHONY S. 2009. Agroforestree Database: A tree reference and selection guide version 4.0. Retrieved from http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp
PINOL AA, PERINO EA, POLLISCO MT, SAN VALENTIN HO, PACHO MV. 2006. A Report on the Stocktaking of National Forest Invasive Species (FIS) Activities in the Philippines. Asia-Pacific Forest Invasive Species Network (APFISN). Retrieved from http://apfisn.net/sites/default/files/Philippines.pdf in January 2017.
PISULA NL, MEINERS SJ. 2010. Relative allelopathic potential of invasive plant species in a young disturbed woodland. The Journal of the Torrey Botanical Society 137(1): 81–87. doi:10.3159/09-ra-040.1
REICHARD SH, HAMILTON CW. 1997. Predicting Invasions of Woody Plants Introduced into North America. Conservation Biology 11(1): 193–203. doi:10.1046/j.1523-1739.1997.95473.x
RICE EL. 1984. Allelopathy. Second Edition. New York: Academic Press. 422p.
RIZVI SJH, TAHIR M, RIZVI V, KOHLI RK, ANSARI A. 1999. Allelopathic Interactions in Agroforestry Systems. Critical Reviews in Plant Sciences 18(6): 773–796. doi: 10.1080/07352689991309487
SCHULZ M, KUSSMANN P, KNOP M, KRIEGS B, GRESENS F, EICHERT T, NOGA G. 2007. Allelopathic Monoterpenes Interfere with Arabidopsis thaliana Cuticular Waxes and Enhance Transpiration. Plant Signaling & Behavior 2(4): 231–239. doi:10.4161/psb.2.4.4469
SCOGNAMIGLIO M, D’ABROSCA B, ESPOSITO A, PACIFICO S, MONACO P, FIORENTINO A. 2013. Plant growth inhibitors: Allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochemistry Reviews 12(4): 803–830. doi:10.1007/s11101-013-9281-9
SON K, KWON S, CHANG H, KIM H, KANG S. 2001. Papyriflavonol A, a new prenylated flavonol from Broussonetia papyrifera. Fitoterapia 72(4): 456–458. doi:10.1016/s0367-326x(00)00329-4
WANG D, OLOFSDOTTER M. 1996. Growth characteristics of allelopathic and nonallelopathic rice. In: First World Congress on Allelopathy. Torres A, Oliva RM, Castellano D, Cross P eds. SAI (University of Cadiz), Cadiz, Spain. 72p.
WATLING JI, HICKMAN CR, LEE E, WANG K, ORROCK JL. 2010. Extracts of the invasive shrub Lonicera maackii increase mortality and alter behavior of amphibian larvae. Oecologia 165(1): 153–159. doi:10.1007/s00442-010-1777-z
WILLIAMSON M. 1996. Biological Invasions. London: Chapman & Hall. 244p.
WINK M, SCHMELLER T, LATZ-BRÜNING B. 1998. Modes of action of allelochemical alkaloids: Interaction with neuroreceptors, DNA and other molecular targets. Journal of Chemical Ecology 24: 1881–1937.
YAMASAKI SH, FYLES JW, EGGER KN, TITUS BD. 1998. The effect of Kalmia angustifolia on the growth, nutrition, and ectomycorrhizal symbiont community of black spruce. Forest Ecology and Management 105(1–3): 197–207. doi: 10.1016/s0378-1127(97)00285-5
ZHOU Y, YU J. 2006. Allelochemicals and photosynthesis. Allelopathy, p. 127–139. doi:10.1007/1-4020-4280-9_6