MENU

Development of High-resolution Melting Assays for the Detection of Single Nucleotide Polymorphisms in Iron-related Genes: The Food and Nutrition Research Institute’s Nutritional Genomics Laboratory Experience

Vanessa Joy A. Timoteo1,3*, Jacus S. Nacis1, Rod Erick L. Agarrado1,
Marietta P. Rodriguez1*, Leslie Michelle M. Dalmacio2, and Mario V. Capanzana1

1Food and Nutrition Research Institute, Department of Science and Technology,
DOST Complex, Bicutan, Taguig City 1631 Philippines
2Department of Biochemistry and Molecular Biology, College of Medicine,
University of the Philippines, 547 Pedro Gil St., Ermita, Manila 1000 Philippines
3Taiwan International Graduate Program in Molecular Medicine,
National Yang-Ming University and Institute of Biomedical Sciences, Academia Sinica,
No. 128, Sec. 2, Academia Rd., Nangang District, Taipei City 115 Taiwan (R.O.C.)

 

*Corresponding Author: This email address is being protected from spambots. You need JavaScript enabled to view it.
This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

 

ABSTRACT

Cost-effective and high-throughput genotyping assays will enable the routine detection of single nucleotide polymorphisms (SNPs) in iron-related genes in the Philippines, where anemia due to iron deficiency remains a public health concern throughout the years. This paper presents the development of high-resolution melting (HRM) assays that were able to identify SNPs in HFE or homeostatic iron regulator gene (rs1800562, rs1799945); TF or transferrin gene (rs3811647, rs1799852); and TMPRSS6 or transmembrane serine protease 6 gene (rs4820268) in the Nutritional Genomics Laboratory of the Department of Science and Technology – Food and Nutrition Research Institute (DOST-FNRI NuGen Lab). Genomic DNA was extracted from 112 peripheral blood samples and SNP-genotyped using the Precision Melt Analysis™ Software of Bio-Rad CFX96™ Real-Time PCR (polymerase chain reaction) Detection System. Real-time amplification reactions were evaluated in terms of varying conditions in annealing temperature (Ta) and number of amplification cycles. HRM assays were then compared against that of the gold-standard sequencing technique using the validation parameters: sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The ideal parameters of HRM assays that can genotype the target SNPs were determined. Genotype discrimination resulted in three genotypes of TF rs3811647, TF rs1799852, and TMPRSS6 rs4820268 with varying frequencies among samples used. Two genotypes were detected for HFE rs1799945, while only one genotype was obtained for HFE rs1800562. The confidence of genotype clusterings were at least 95%. All assays had 100% concordance with the sequencing results except for the TMPRSS6 rs4820268 assay, which achieved a sensitivity of 97%. Therefore, in line with the establishment of the DOST-FNRI NuGen Lab, HRM assays can be considered a reliable and affordable alternative to sequencing. Identifying genetically high-risk Filipinos in the diagnosis of anemia due to iron deficiency may be facilitated in the future.

 

 

INTRODUCTION

HRM is a post-amplification technique that allows for the genotyping and screening of genetic variants based on the characteristic melting points and profiles of DNA amplicons (Reed et al. 2007). Such melting profiles depend mainly on amplicon length, sequence covering the target loci and its guanine-cytosine (GC) content, and heterozygosity of a particular genetic marker locus. In essence, HRM analysis works by monitoring in real-time the fluorescence levels of a saturating DNA-binding dye (i.e., SYBR® Green Dye) during amplification followed by the generation of melting curves of fluorescence data against time (Erali et al. 2008). Compared to other polymerase chain reaction-based genotyping techniques such as restriction fragment length polymorphism, HRM is considered advantageous because it is simple, rapid, cost-effective, efficient, and can be high-throughput depending on the number of samples to be analyzed (Wittwer 2009). Current applications of HRM analysis among others include the genotyping of SNPs (i.e., variations in single base pairs that are being linked to disease phenotypes, personalized drug responses, etc.); assessment of DNA methylation (i.e., attachment of methyl groups to DNA bases that turns genes on or off and alters gene expression); and analysis of copy number variants or CNVs (i.e., varying number of copies of a particular gene among individuals) (Reed and Wittwer 2004, Wojdacz and Dobrovic 2007, Bruder et al. 2008). . . . read more

 


REFERENCES

AN P, WU Q, WANG H, GUAN Y, MU M, LIAO Y, ZHOU D, SONG P, WANG C, MENG L, MAN Q, LI L, ZHANG J, WANG F. 2012. TMPRSS6, but not TF, TFR2 or BMP2 variants are associated with increased risk of iron-deficiency anemia. Hum Mol Genet 21(9): 2124–2131. doi: 10.1093/hmg/dds028.
BENYAMIN B, MCRAE AF, ZHU G, GORDON S, HENDERS AK, PALOTIE A, PELTONEN L, MARTIN NG, MONTGOMERY GW, WHITFIELD JB, VISSCHER PM. 2009. Variants in TF and HFE Explain ~40% of Genetic Variation in Serum Transferrin Levels. Am J Hum Genet 84(1): 60–65. doi: 10.1016/j.ajhg.2008.11.011.
BEUTLER E. 1997. The significance of the 187G (H63D) mutation in hemochromatosis. (Letter) Am J Hum Genet 61(3): 762–764. doi: 10.1016/S0002-9297(07)64339-0.
BEUTLER E, GELBART T, LEE P, TREVINO R, FERNANDEZ MA, FAIRBANKS VF. 2000. Molecular characterization of a case of atransferrinemia. Blood 96(13): 4071–4074.
BLANCO-ROJO R, BAEZA-RICHER C, LÓPEZ-PARRA AM, PÉREZ-GRANADOS AM, BRICHS A, BERTONCINI S, BUIL A, ARROYO-PARDO E, SORIA JM, VAQUERO MP. 2011. Four variants in transferrin and HFE genes as potential markers of iron deficiency anaemia risk: An association study in menstruating women. Nutr Metab (Lond) 8: 69. doi: 10.1186/1743-7075-8-69.
BRUDER CEG, PIOTROWSKI A, GIJSBERS AACJ, ANDERSSON R, ERICKSON S, DE STÅHL TD, MENZEL U, SANDGREN J, VON TELL D, POPLAWSKI A, CROWLEY M, CRASTO C, PARTRIDGE EC, TIWARI H, ALLISON DB, KOMOROWSKI J, VAN OMMEN GJ, BOOMSMA DI, PEDERSEN NL, DEN DUNNEN JT, WIRDEFELDT K, DUMANSKI JP. 2008. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 82(3): 763–771. doi: 10.1016/j.ajhg.2007.12.011.
CHAMBERS JC, ZHANG W, LI Y, SEHMI J, WASS MN, ZABANEH D, HOGGART C, BAYELE H, MCCARTHY MI, PELTONEN L, FREIMER NB, SRAI SK, MAXWELL PH, STERNBERG MJ, RUOKONEN A, ABECASIS G, JARVELIN MR, SCOTT J, ELLIOTT P, KOONER JS. 2009. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nat Genet 41(11): 1170–1172. doi: 10.1038/ng.462.
COOPER DN. 2010. Functional intronic polymorphisms: Buried treasure awaiting discovery within our genes. Hum Genomics 4(5): 284–288. doi: 10.1186/1479-7364-4-5-284.
CORPET F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22): 10881–10890. Retrieved from http://multalin.toulouse.inra.fr/multalin/
EDWARDS NC, HING ZA, PERRY A, BLAISDELL A, KOPELMAN DB, FATHKE R, PLUM W, NEWELL J, ALLEN CE, S G, SHAPIRO A, OKUNJI C, KOSTI I, SHOMRON N, GRIGORYAN V, PRZYTYCKA TM, SAUNA ZE, SALARI R, MANDEL-GUTFREUND Y, KOMAR AA, KIMCHI-SARFATY C. 2012. Characterization of Coding Synonymous and Non-Synonymous Variants in ADAMTS13 Using Ex Vivo and In Silico Approaches. PLoS ONE 7(6): e38864. doi: 10.1371/journal.pone.0038864.
ERALI M, VOELKERDING KV, WITTWER CT. 2008. High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol 85(1): 50–58. doi: 10.1016/j.yexmp.2008.03.012.
FARIS A, YUSOF HHBM, ABIDIN SZ, HABIB O, CHEAH P-S, STANSLAS J, IBRAHIM N, LYE M-S, VEERAKUMARASIVAM A, ROSLI R, LING KH. 2018. Development and Validation of High Resolution Melting Assays for High-Throughput Screening of BDNF rs6265 and DAT1 rs40184. Mal J Med Health Sci 14(SP1): 64–71.
FEDER JN, GNIRKE A, THOMAS W, TSUCHIHASHI Z, RUDDY DA, BASAVA A, DORMISHIAN F, DOMINGO R JR, ELLIS MC, FULLAN A, HINTON LM, JONES NL, KIMMEL BE, KRONMAL GS, LAUER P, LEE VK, LOEB DB, MAPA FA, MCCLELLAND E, MEYER NC, MINTIER GA, MOELLER N, MOORE T, MORIKANG E, PRASS CE, QUINTANA L, STARNES SM, SCHATZMAN RC, BRUNKE KJ, DRAYNA DT, RISCH NJ, BACON BR, WOLFF RK. 1996. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13(4): 399–408. doi: 10.1038/ng0896-399.
FEDER JN, PENNY DM, IRRINKI A, LEE VK, LEBRÓN JA, WATSON N, TSUCHIHASHI Z, SIGAL E, BJORKMAN PJ, SCHATZMAN RC. 1998. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Nat Acad Sci 95(4): 1472–1477. doi: 10.1073/pnas.95.4.1472.
FISHER C, MENG R, BIZOUARN F, SCOTT R. 2010. Bio-Rad Laboratories, Inc. Bulletin 6009: High Resolution Melt Parameter Considerations for Optimal Data Resolution. Retrieved from http://www.bio-rad.com/en-ph/applications-technologies/what-high-resolution-melting-hrm?ID=LUSOIH97Q on 15 Apr 2019.
GARRITANO S, GEMIGNANI F, VOEGELE C, NGUYEN-DUMONT T, LE CALVEZ-KELM F, DE SILVA D, LESUEUR F, LANDI S, TAVTIGIAN SV. 2009. Determining the effectiveness of High Resolution Melting analysis for SNP genotyping and mutation scanning at the TP53 locus. BMC Genet 10: 5. doi: 10.1186/1471-2156-10-5.
GICHOHI-WAINAINA WN, TOWERS GW, SWINKELS DW, ZIMMERMANN MB, FESKENS EJ, MELSE-BOONSTRA A. 2015. Inter-ethnic differences in genetic variants within the transmembrane protease, serine 6 (TMPRSS6) gene associated with iron status indicators: a systematic review with meta-analyses. Genes Nutr 10(1): 442. doi: 10.1007/s12263-014-0442-2.
HELSMOORTEL C, KOOY RF, VANDEWEYER G. 2016. Multiplexed High Resolution Melting Assay for Versatile Sample Tracking in a Diagnostic and Research Setting. J Mol Diagn 18(1): 32–38. doi: 10.1016/j.jmoldx.2015.06.011.
HENTZE MW, MUCKENTHALER MU, GALY B, CAMASCHELLA C. 2010. Two to Tango: Regulation of Mammalian Iron Metabolism. Cell 142(1): 24–38. doi: 10.1016/j.cell.2010.06.028.
HUYNH L, BUI P, NGUYEN T, NGUYEN H. 2017. Developing a high resolution melting method for genotyping and predicting association of SNP rs353291 with breast cancer in the Vietnamese population. Biomed Res Ther 4(12): 1812–1831. doi: 10.15419/bmrat.v4i12.387.
KAMATANI Y, MATSUDA K, OKADA Y, KUBO M, HOSONO N, DAIGO Y, NAKAMURA Y, KAMATANI N. 2010. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 42(3): 210–215. doi: 10.1038/ng.531.
LIEW M, PRYOR R, PALAIS R, MEADOWS C, ERALI M, LYON E, WITTWER C. 2004. Genotyping of Single-Nucleotide Polymorphisms by High-Resolution Melting of Small Amplicons. Clin Chem 50(7): 1156–1164. doi: 10.1373/clinchem.2004.032136.
LO KS, WILSON JG, LANGE LA, FOLSOM AR, GALARNEAU G, GANESH SK, GRANT SF, KEATING BJ, MCCARROLL SA, MOHLER ER 3RD, O'DONNELL CJ, PALMAS W, TANG W, TRACY RP, REINER AP, LETTRE G. 2011. Genetic association analysis highlights new loci that modulate hematological trait variation in Caucasian and African Americans. Hum Genet 129(3): 307–317. doi: 10.1007/s00439-010-0925-1.
MADDEN T. 2002. The BLAST Sequence Analysis Tool. The NCBI Handbook, Chapter 16 [Internet]. McEntyre J, Ostell J, eds. Bethesda, MD: National Center for Biotechnology Information (US). Retrieved from http://blast.ncbi.nlm.nih.gov/Blast.cgi
MARKHAM NR, ZUKER M. 2005. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33(Web Server issue): W577–W581. doi: 10.1093/nar/gki591. Retrieved from http://mfold.rna.albany.edu/?q=DINAMelt
NACIS JS, GOLLOSO-GUBAT MJ, TIMOTEO VJA, MAGTIBAY EVJ, UDARBE MA, SANTOS NLC. 2018. The Obesity-related Single Nucleotide Polymorphisms FTO and GHSR Genes and the Postprandial Feeling of Fullness in Filipino Adults. Philipp J Sci 147(3): 483–491.
NORAMBUENA PA, COPELAND JA, KRENKOVÁ P, STAMBERGOVÁ A, MACEK M. 2009. Diagnostic method validation: High resolution melting (HRM) of small amplicons genotyping for the most common variants in the MTHFR gene. Clin Biochem 42(12): 1308–1316. doi: 10.1016/j.clinbiochem.2009.04.015.
O'LEARY NA, WRIGHT MW, BRISTER JR, CIUFO S, HADDAD D, MCVEIGH R, RAJPUT B, ROBBERTSE B, SMITH-WHITE B, AKO-ADJEI D, ASTASHYN A, BADRETDIN A, BAO Y, BLINKOVA O, BROVER V, CHETVERNIN V, CHOI J, COX E, ERMOLAEVA O, FARRELL CM, GOLDFARB T, GUPTA T, HAFT D, HATCHER E, HLAVINA W, JOARDAR VS, KODALI VK, LI W, MAGLOTT D, MASTERSON P, MCGARVEY KM, MURPHY MR, O'NEILL K, PUJAR S, RANGWALA SH, RAUSCH D, RIDDICK LD, SCHOCH C, SHKEDA A, STORZ SS, SUN H, THIBAUD-NISSEN F, TOLSTOY I, TULLY RE, VATSAN AR, WALLIN C, WEBB D, WU W, LANDRUM MJ, KIMCHI A, TATUSOVA T, DICUCCIO M, KITTS P, MURPHY TD, PRUITT KD. 2016. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1): D733–D745. doi: 10.1093/nar/gkv1189.
ORDOVAS JM, CORELLA D. 2004. Nutritional genomics. Annu Rev Genomics Hum Genet 5: 71–118. doi: 10.1146/annurev.genom.5.061903.180008.
REED GH, KENT JO, WITTWER CT. 2007. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8(6): 597–608. doi: 10.2217/14622416.8.6.597.
REED GH, WITTWER CT. 2004. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50(10): 1748–1754. doi: 10.1373/clinchem.2003.029751.
SHERRY ST, WARD MH, KHOLODOV M, BAKER J, PHAN L, SMIGIELSKI EM, SIROTKIN K. 2001. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res 29(1): 308–311. Retrieved from https://www.ncbi.nlm.nih.gov/snp/
SLOMKA M, SOBALSKA-KWAPIS M, WACHULEC M, BARTOSZ G, STRAPAGIEL D. 2017. High Resolution Melting (HRM) for High-Throughput Genotyping—Limitations and Caveats in Practical Case Studies. Int J Mol Sci 18(11): 2316. doi: 10.3390/ijms18112316.
SORANZO N, SPECTOR TD, MANGINO M, KÜHNEL B, RENDON A, TEUMER A, WILLENBORG C, WRIGHT B, CHEN L, LI M, SALO P, VOIGHT BF, BURNS P, LASKOWSKI RA, XUE Y, MENZEL S, ALTSHULER D, BRADLEY JR, BUMPSTEAD S, BURNETT MS, DEVANEY J, DÖRING A, ELOSUA R, EPSTEIN SE, ERBER W, FALCHI M, GARNER SF, GHORI MJ, GOODALL AH, GWILLIAM R, HAKONARSON HH, HALL AS, HAMMOND N, HENGSTENBERG C, ILLIG T, KÖNIG IR, KNOUFF CW, MCPHERSON R, MELANDER O, MOOSER V, NAUCK M, NIEMINEN MS, O'DONNELL CJ, PELTONEN L, POTTER SC, PROKISCH H, RADER DJ, RICE CM, ROBERTS R, SALOMAA V, SAMBROOK J, SCHREIBER S, SCHUNKERT H, SCHWARTZ SM, SERBANOVIC-CANIC J, SINISALO J, SISCOVICK DS, STARK K, SURAKKA I, STEPHENS J, THOMPSON JR, VÖLKER U, VÖLZKE H, WATKINS NA, WELLS GA, WICHMANN HE, VAN HEEL DA, TYLER-SMITH C, THEIN SL, KATHIRESAN S, PEROLA M, REILLY MP, STEWART AF, ERDMANN J, SAMANI NJ, MEISINGER C, GREINACHER A, DELOUKAS P, OUWEHAND WH, GIEGER C. 2009. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41(11): 1182–1190. doi: 10.1038/ng.467.
TANAKA T, ROY CN, YAO W, MATTEINI A, SEMBA RD, ARKING D, WALSTON JD, FRIED LP, SINGLETON A, GURALNIK J, ABECASIS GR, BANDINELLI S, LONGO DL, FERRUCCI L. 2010. A genome-wide association analysis of serum iron concentrations. Blood 115: 94–96. doi: 10.1182/blood-2009-07-232496.
TAYLOR S, SCOTT R, KURTZ R, FISHER C, PATEL V, BIZOUARN F. 2010. Bio-Rad Laboratories, Inc. Bulletin 6004: A Practical Guide to High Resolution Melt Analysis Genotyping. Retrieved from http://www.bio-rad.com/en-ph/applications-technologies/what-high-resolution-melting-hrm?ID=LUSOIH97Q on 15 Apr 2019.
TIMOTEO VJA, DALMACIO LMM, NACIS JS, MARCOS JM, RODRIGUEZ MP, CAPANZANA MV. 2018. Blood Iron Concentration and Status in Pregnant Filipino Women with Single Nucleotide Polymorphisms in HFE, TMPRSS6, and TF. Philipp J Sci 147(1): 99–112.
UNTERGASSER A, CUTCUTACHE I, KORESSAAR T, YE J, FAIRCLOTH BC, REMM M, ROZEN SG. 2012. Primer3–new capabilities and interfaces. Nucleic Acids Res 40(15): e115. doi: 10.1093/nar/gks596. Retrieved from http://primer3plus.com/cgi-bin/dev/primer3plus.cgi
VOSSEN R, ATEN E, ROOS A, DEN DUNNEN JT. 2009. High-resolution Melting Analysis (HRMA) – More than just sequence variant screening. Hum Mutat 30(6): 860–866. doi: 10.1002/humu.21019.
WAHYUNINGSIH H, CAYAMI FK, BAHRUDIN U, SOBIRIN MA, MUNDHOFIR FEP, FARADZ SMH, HISATOME I. 2017. Optimization of PCR Condition: The First Study of High Resolution Melting Technique for Screening of APOA1 Variance. Yonago Acta Med 60(1): 24–30.
 WITTWER CT. 2009. High-Resolution DNA Melting Analysis: Advancements and Limitations. Hum Mutat 30(6): 857–859. doi: 10.1002/humu.20951.
WOJDACZ TK, DOBROVIC A. 2007. Methylation-sensitive high resolution melting (MS-HRM): A new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res 35(6): e41. doi: 10.1093/nar/gkm013.
YE J, COULOURIS G, ZARETSKAYA I, CUTCUTACHE I, ROZEN S, MADDEN T. 2012. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134. doi: 10.1186/1471-2105-13-134. Retrieved from https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi
ZERBINO DR, ACHUTHAN P, AKANNI W, AMODE MR, BARRELL D, BHAI J, BILLIS K, CUMMINS C, GALL A, GIRÓN CG, GIL L, GORDON L, HAGGERTY L, HASKELL E, HOURLIER T, IZUOGU OG, JANACEK SH, JUETTEMANN T, TO JK, LAIRD MR, LAVIDAS I, LIU Z, LOVELAND JE, MAUREL T, MCLAREN W, MOORE B, MUDGE J, MURPHY DN, NEWMAN V, NUHN M, OGEH D, ONG CK, PARKER A, PATRICIO M, RIAT HS, SCHUILENBURG H, SHEPPARD D, SPARROW H, TAYLOR K, THORMANN A, VULLO A, WALTS B, ZADISSA A, FRANKISH A, HUNT SE, KOSTADIMA M, LANGRIDGE N, MARTIN FJ, MUFFATO M, PERRY E, RUFFIER M, STAINES DM, TREVANION SJ, AKEN BL, CUNNINGHAM F, YATES A, FLICEK P. 2017. Ensembl 2018. Nucleic Acids Res 46(D1): D754–D761. doi: 10.1093/nar/gkx1098.
ZUMARAGA MP, RODRIGUEZ R, TIMOTEO VJ, TANCHOCO C. 2015. Method Validation of a High Resolution Melting Analysis of a Candidate Genetic Marker of Hypertension. J ASEAN Fed Endocr Soc 30(1): 18–24. doi: 10.15605/jafes.030.01.01.