Determination of the cDNA Sequence and In Silico Functional Analysis of a Glucoamylase Gene From Saccharomycopsis fibuligera 2074
Dan Exerlin E. Bonete, Joel Hassan G. Tolentino, and Annabelle U. Novero*
College of Science and Mathematics, University of the Philippines Mindanao,
Mintal, Tugbok District, Davao City 8022 Philippines
*Corresponding author: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Saccharomycopsis fibuligera 2074 is a yeast strain used in producing tapuy, a traditional Philippine wine mix. A glucoamylase gene from this yeast was isolated and characterized in this study. Using primers designed via the primer walking method, the synthesized Sf 2074 cDNA (GenBank: KP068008.1) was found to contain 1531 bp and was homologous to glucoamylases deposited in the databases. Using bioinformatic tools, the predicted protein was found to possess 512 amino acids and a molecular weight of 56715.92. The conserved amino acid sequence Ala-Tyr-Thr-Gly similar to other amylases was located. The glucoamylase belongs to a superfamily of Glycoside Hydrolase 15 (GH 15), which are six-hairpin glycosidases with alpha/alpha toroid fold. This is the first report of a glucoamylase gene from S. fibuligera in the Philippines. Bioethanol cost of production could be markedly reduced if this amylolytic gene can be cloned in the brewer’s yeast Saccharomyces cerevisieae.
Keywords: glucoamylase, in silico characterization, primer walking, protein structure, Saccharomycopsis fibuligera, yeast
INTRODUCTION
Ethanol is the most widely used liquid biofuel. The demand for ethanol is expected to rise to over 125 billion liters in 2017 (FAO 2008). It is fermented from sugars, starches, or from cellulosic biomass. Production of ethanol from starch is one way to reduce consumption of crude oil as well as environmental pollution. In view of continuously rising petroleum costs and dependence upon fossil fuel resources, considerable attention has been focused on alternative energy resources. Production of ethanol from biomass is one way to reduce both the consumption of crude oil and environmental pollution (DiPardo 2000; Bothast & Schlicher 2005; Dufey 2006; Schafer et al. 2007). . . . . read more
REFERENCES
ALESHIN AE, HOFFMAN C, FIRSOV LM & HONZATKO RB. 1994a. Crystal structure of glucoamylase from Aspergillus awamori var. X100–2.2 A ˚ resolution. J Mol Biol 238: 575-591.
ALESHIN AE, FIRSOV LM & HONZATKO RB. 1994b. Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100–2.4 A ˚ resolution. J Biol Chem 269: 15631-39.
ALESHIN A, GOLUBEV A, FIRSOV LM, HON- ZATKO RB. 1992. Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-A resolution. J. Biol. Chem. 267: 19291-98
ALTSCHUL SF, WOOTON JC, GERTZ EM, AGARWALA R, MORGULIS A,
SCHAFFER AA, YU YK. 2005. Protein database searches using compositionally adjusted substitution matrices. FEBS J272: 3389-3402.
ALTSCHUL SF, MADDEN TL, SCHAFFER AA, ZHANG J, ZHANG Z, MILLER W,
LIPMAN DJ. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acid Res 25: 3389-3402.
BARCHIESI J, HEDIN N, GOMEZ-CASATI DF, BALLICORA MA, BUSI MV. 2015. Functional demonstrations of starch binding domains present in Ostreococcus tauri starch synthases isoforms. BMC Research Notes 8: 613.
BIOEDIT [Computer Software]. n/d. Ibis BioSciences. Retrieved from http://www.mbio.ncsu.edu/BioEdit/bioedit.html
BOTHAST RJ, SCHLICHER MA. 2005. Biotechnological processes for conversion of corn into ethanol. Appl MicrobiolBiotechnol 67: 19-25.
BURDEN D. 2008. Comparison: zymolyase™ vs. lyticase & glusulase. Retrieved from http://www.amsbio.com/brochures/Zymolyase_Comparison.pdf on 31 Mar 2015.
[CAZy] Carbohydrate Active Enzymes. 2017. Retrieved from http://www.cazy.org.
CLUSTALΩ [Computer Software]. n/d. European Bioinformatics Institute. Retrieved from http://www.ebi.ac.uk/Tools/ msa/clustalo
DE SOUZA PM, MAGALHAES PDO. 2010. Application of microbial α-amylase in industry – A review. Braz J Microbiol. 41(4): 850-861.
DIPARDO J. 2000. Outlook for biomass ethanol production and demand. Energy Information Administration, Washington, D.C.
DUFEY A. 2006. Biofuels production, trade and sustainable development: Emerging issues. International Institute for Environment and Development, London.
FARRELL RE, JR. 2009. Resilient Ribonucleases. In: RNA Methodologies: Laboratory Guide for Isolation and Characterization. 4th ed. Retrieved from http://books.google.com.ph/books?id=ERdmQGrAtTQC&dq=RNases+are+said+to+be+very+stable+and+active&hl=fil&source=gbs_navlinks_s on 22 Aug 2013.
FOGARTY WM, KELLY CT. 1980. Amylases, Amyloglucosidase and related Glucanases. In: Microbial enzymes and Bioconversion, 4th ed. Academic press, London: p. 115-170.
[FAO] Food and Agriculture Organization. 2008. FAO, The State of Food and Agriculture, Biofuels: Prospects, Risks and Opportunities, Chap 4. FAO, United Nations. 47p.
FRANDSEN TP, FIEROBE HP, SVENSSON B. 1999. In: Alberghin L, ed. Engineering specificity and stability in glucoamylase from Aspergillus niger in protein engineering in industrial biotechnology. Amsterdam Harwood Academic. p. 189-206.
FRONTERAS JP, BULLO LLR. 2017. Raw starch-digesting amylase from Saccharomycopsis fibuligera 2074 isolated from bubod starter. Phil J Sci 46 (1): 27-35.
GALDINO AS, SILVA R, LOTTERMANN MT, ALVARES ACM, DE MORAES LMP, TORRES FAG, DE FREITAS SM, ULHOA CJ. 2010. Biochemical and structural characterization of Amy1: An alpha-amylase from Cryptococcus flavus expressed in Saccharomyces cerevisiae. Creative Commons Attribution License. p. 1-7.
GOYAL N, GUPTA JK, SONI SK. 2005. A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in direct hydrolysis of raw potato starch. Enzyme Microb Technol 37: 723-734.
GUILLEN D, SANCHEZ S, RODRÍGUEZ-SANOIA R. 2010. Carbohydrate-binding domains: multiplicity of biological roles. Applied Microbiology and Biotechnology 85(5): 1241-49.
GUPTA R, GIGRAS P, MOHAPATRA H, GOSWAMI VK, CHAUHAN B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochemistry 38(11): 1599-1616.
HAAS J, ROTH S, ARNOLD K, KIEFER F, SCHMIDT T, BORDOLI L, SCHWEDE T. 2013. The Protein Model Portal - a comprehensive resource for protein structure and model information. Database bat031
HARRIS EMS, ALESHIN AE, FIRSOV LM & HONZATKO RB. 1993. Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100–2.4 A ˚ resolution. Biochemistry 32: 1618-26.
HENRISSAT B. 1991. A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem. J. 280: 309-316.
HENRISSAT B, BAIROCH A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788.
HORVÁTHOVÁ V, SLAJSOVÁ K, STURDÍK E. 2004. Evaluation of the glucoamylase Glm from Saccharomycopsis fibuligera IFO 0111 in hydrolysing the corn starch. Biologia Bratislava 59: 361-365.
HORVÁTHOVÁ V, JANEČEK S, STURDÍK E. 2001. Amylolytic enzymes: molecular aspects of their properties . Gen Physiol Biophys. 20(1): 7-32.
HORVÁTHOVÁ VS, JANEČEK S, STURDÍK E. 2000. Amylolytic enzymes: their specificities, origins and properties. Biologia Bratislava 55/6: 605-615.
HOSTINOVÁ E. 2002. Amylolytic enzymes produced by the yeast Saccharomycopsis fibuligera. Biologia, Bratislava. Suppl. 11: 247-251.
HOSTINOVÁ E, BALANOVÁ J, GASPERÍK J. 1991. The nucleotide sequence of the glucoamylase gene GLA1 from Saccharomycopsis fibuligera KZ. FEMS Microbiol Lett 83(1):103-108.
HOSTINOVÁ E, SOLOVICOVÁ A, DVORSKY R, GASPERÍK J. 2003. Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. Arch Biochem Biophys 411: 189-195.
HOSTINOVÁ E, SOLOVICOVÁ A, GASPERÍK J. 2005. Cloning and expression of a gene for an alpha-glucosidase from Saccharomycopsis fibuligera homologous to family GH31 of yeast glucoamylases. Appl Microbiol Biotechnol 69(1): 51-56.
IEFUJI H, CHINO M, KATO M, IMURA Y. 1996. Raw-starch-digesting and thermostable α-amylase from the yeast Cryptococcus sp. S-2: Purification, characterization, cloning, and sequencing. Biochem J 318(3): 989-996.
ITOH T, OHTSUKI I, YAMASHITA I, FUKUI S. 1987. Nucleotide sequence of the glucoamylase gene GLU1 in the yeast Saccharomycopsis fibuligera. J Bacteriol 169(9): 4171-76.
JABBOUR D, SORGER A, SAHM K, ANTRANIKIANG. 2012. A highly thermoactive and salt-tolerant α-amylase isolated from a pilot-plant biogas reactor. Appl Microbiol Biotechnol 97(7): 2971-78.
JAFFAR MB, BHARAT RP, NOROUZIAN D, IRANI SD, SHETTY P. 1993. Production of glucoamylase by nematophagus fungi Arthrobotrys species. Indian J Exp Biol 31: 87-89.
JANKOWSKI P, VENNEMEYER E, HUNKAPILLER K, SHAH P, VADAPALLI A. 2007. Direct sequencing quality control: A novel software approach to reducing researcher labor. Retrieved from http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_039259.pdf
JUDELSON H. 2000. Guidelines for designing primers. Retrieved from https://oomyceteworld.net/protocols/primer%20designing2.pdf
KAINZ P. 2000. The PCR plateau phase- towards an understanding of its limitations. Biochem Biophys Acta 1494: 23-27.
KAPLAN F, GUY CL. 2004. β-Amylase Induction and the Protective Role of Maltose during Temperature Shock. Plant Physiol. 135(3): 1674-84.
KELLEY LA, MEZULIS S, YATES CM, WASS MN, STERNBERG MJ. 2015. The Pyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6): 845-858.
KONSTANTINIDIS A, SINNOT ML. 1991. The interaction of 1-fluoro-d-glucopyranosyl fluoride with glucosidases. Biochem J 279: 587-593.
KOSSMANN J, LLOYD J. 2000. Understanding and influencing starch biochemistry. Crit Rev Biochem Mol Biol 35: 141-196.
KRAMER MF, COEN DM. 2006. Enzymatic amplification of DNA by PCR: standard procedures and optimization. Curr Protoc Cytom, Appendix 3K.
LI Z, JIANG N, WEI P, CHENG H, HE P, LU D. 2011. Cloning and characterization of a glucoamylase gene from the dimorphous yeast Saccharomycopsis fibuligera. Direct submission. NCBI Accession Number JF751023. https://www.ncbi.nlm.nih.gov/nuccore/JF751023.
LOOKE M, KRISTJUHAN K, KRISTJUHAN A. 2011. Extraction of Genomic DNA from Yeasts for PCR-Based Applications. Biotechniques 50(5): 325-328.
LY HD, WITHERS S. 1999. Mutagenesis of glycosidases. Annu. Rev. Biochem. 68: 487-522.
MATSUBARA T, AMMAR YB, ANINDYAWATI T, YAMAMOTO S, ITO K, IZUKA M,
MINAMIURA N. 2004. Molecular cloning and determination of the nucleotide sequence of raw starch-digesting α-amylase from Aspergillus awamori KT-11 J Biochem Mol Biol 37(4): 429-438.
MCCARTER JD, WITHERS SG. 1994. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4: 885-892.
MCWILLIAM H, LI W, ULUDAG M, SQUIZZATO S, PARK YM, BUSO, N, COWLEY,
AP, LOPEZ R. 2013. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res 41(Web Server issue): W597-600.
MARKOULATOS P, SIAFAKAS N, MONCANY M. 2002. Multiplex polymerase chain reaction: a practical approach. J Clin LabAnaly 16(1): 47-51.
MEDZIHRADSZKY KF. 2008. Characterization of site-specific N-glycosylation. Meth Mol Biol 446: 293-316.
MELLQUIST JL, KASTURI L, SPITALNIK SL, SHAKIN-ESHLEMAN SH. 1998. The amino acid following an asn-X-Ser/Thr sequence is an important determinant of N-linked core glycosylation efficiency. Biochem 37(19): 6833-37.
MERTENS JA, SKORY CD. 2006. Isolation and characterization of a second glucoamylase gene without a starch binding domain from Rhizopus oryzae. Enzy. Microbia. Technol. 40: 874-880.
MIKAMI B, ADACHI M, KAGE T, SARIKAYA E, NANMORI T, SHINKE R, UTSUMI S. 1999. Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose. Biochem 38(22): 7050--61.
NATALIA D, VIDILASERIS K, SATRIMAFITRAH P, ISMAYA WT, PURKAN H, PERMENTIER H, FIBRIANSAH G, PUSPASARI F, NURACHMAN Z, DIJKSTRA BW, SOEMITRO S. 2011. Biochemical characterization of a glucoamylase from Saccharomycopsis fibuligera R64. Biol66(1): 27-32.
NOROUZIAN D, JAFFAR MB. 1993. Immobilization of glucoamylase produced by fungus Arthrobotrys amerospore. Indian JExp Biol 31: 680-681.
NOROUZIAN D, AKBARZADEH A, SCHARER JM, YOUNG MM. 2005. Fungal glucoamylases. Elsevier: p. 80-83.
OLANIYI OO, AKINYELE BJ, AROTUPIN DJ. 2010. Purification and characterization of beta amylase from Volvariella volvacea. Nigerian J Microbiol 24(1): 1976-82.
PANDEY A, NIGAM P, SOCCOL CR, SOCCOL VT, SINGH D, MOHAN R. 2000. Advances in microbial amylases. Biotechnol Appl Biochem 31: 135-152.
PAVEZZI FC, GOMES E, DA SILVA R. 2008. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources. Braz J Microbiol 39(1): 108-114.
PRIMER-BLAST [Computer software]. n/d. US National Center for Biotechnology Information. Retrieved from http://www.ncbi.nlm.nih.gov/tools/primer-blast
REILLY PJ. 1999. Protein engineering of glucoamylase to improve industrial properties; a review. Starch 51: 269-274.
SCHAFER T, BORCHERT TW, NIELSEN VS, SKAGERLIND P, GIBSON K, WENGER K. 2007. Industrial enzymes. Adv BiochemEng/Biotechnol 105: 59-131.
SCHEIDIG A, FRÖHLICH A, SCHULZE S, LLOYD JR, KOSSMANN J. 2002. Downregulation of a chloroplast-targeted beta-amylase leads to starch-excess phenotype in leaves. Plant J 30: 581-591.
SHIAU RJ, HUNG HC, JEAN CL. 2003. Improving the thermostability of raw-starch-digesting amylase from Cytophaga sp. by site-directed mutagenesis. Appl. Environ. Microbiol. 69(4): 2383-85.
SEVCÍK J, SOLOVICOVÁ A, HOSTINOVÁ E, GASPERÍK J, WILSON KS, DAUTER Z. 1998. Structure of glucoamylase from Saccharomycopsis fibuligera at 1.7 A resolution. Acta Crystallogr. D54: 854-866.
SEVCÍK J, HOSTINOVÁ E, SOLOVICOVÁ A, GASPERÍK J, DAUTER Z, WILSON KS. 2006. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. FEBS J. 273(10): 2161-71.
SHOSEYOV O, SHANI Z, LEVY I. 2006. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 70(2): 283-95.
SIERKS MR, FORD C, REILLY PJ, SVENSSON B. 1990. Catalytic mechanism of fungal glucoamylase as defined bymutagenesis of Asp176, Glu179, and Glu180 in the enzyme from Aspergillus awamori. Protein Eng 3: 193-198.
SIEVERS F, WILM A, DINEEN D, GIBSON TJ, KARPLUS K, LI W, LOPEZ R, MCWILLIAM H, REMMERT M, SODING J, THOMPSON JD, HIGGINSDG. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol SystBiol 7: 539.
SINNOTT ML. 1990. Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90: 1171-1202.
SOHN CB, LEE SM, KIM MH, KO JH, KIM KS. 1996. Purification and characterization of β-amylase from Bacillus polytnyna No 26-1. J Food Sci 61: 230-234.
SOLOVICOVÁ A, CHRISTENSEN T, HOSTINOVÁ E, GASPERÍK J, SEVCĬK J, SVENSSON B. 1999. Structure-function relationships in glucoamylases encoded by variant Saccharomycopsis fibuligera genes. Eur J Biochem. 264(3): 756-64.
SUNDARRAM A, MURTHY TPK. 2014. α-Amylase Production and Applications: A Review. Journal of Applied & Environmental Microbiology 2(4): 166-175.
SVENSSON B, CLARKE AJ, SVENDSEN I, MOLLER H. 1990. Identification of carboxylic acid residues in glucoamylaseG2 from Aspergillus niger that participate in catalysis and substrate binding. Eur J Biochem 188: 29-38.
TANAKA Y, TAO W, BLANCHARD JS, HEHRE EJ. 1994. Transition-state structures for the hydrolysis of alpha-dglucopyranosyl fluoride by retaining and inverting reactions of glycosylases. J Biol Chem 269: 32306-12.
UEDA S, MARSHALL JJ. 1980. Raw starch digestion of Bacillus polymyxa bet amylase. Starch/Starke 32: 122-125.
VIHINEN M, MANTASALA P. 1989. Microbial amylolytic enzymes. Critic Rev Biochem Mol Biol 24: 329-418.
WASS MN, KELLEY LA, STERNBERG MJ. 2010. 3DLigandSite: predicting ligand-Binding sites using similar structures.Nar 38: w469-73.
WIND RD. 1997. Starch-converting Enzymes from Thermophilic Microorganisms, PhD thesis, ISBN 90-9010859-9, Ponsen & Looijen BV, Wageningen, the Netherlands
WONG DWS, ROBERTSON GH. 2002. Beta-amylases. In: Handbook of Food Enzymology. Whitaker JR, Voragen AGJ, Wong DWS eds. Marcel Dekker: New York; Chapter 57.
WU AC, RAL JP, MORELL MK, GILBERT RG. 2014. New Perspectives on the Role of α- and β-Amylases in Transient Starch Synthesis. PLoS ONE 9(6): e100498.
YE J, COULOURIS G, ZARETSKAYA I, CUTCUTACHE I, ROZEN S, MADDEN TL 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf 13: 134.