Energy Neutral Phosphate Fertilizer Production Using High Temperature Reactors - A Philippine Case Study


Nils Haneklaus1, Rolando Reyes2, Wendy G. Lim2,
Estrellita U. Tabora2, Botvinnik L. Palattao2, Christina Petrache2,
Edmundo P. Vargas2, KazuhikoKunitomi3, HirofumiOhashi3, NariakiSakaba3,
HiroyukiSato3, MinoruGoto3, XingYan3, Tetsuo Nishihara3, Harikrishnan Tulsidas4,
Frederik Reitsma4, Sandor Tarjan5, Karthikkeyan Sathrugnan5,
Radojko Jacimovic6, Nahhar Al Khaledi7, Brian K. Birky8, and Ewald Schnug9
1University of California, Department of Nuclear Engineering,
4118 Etcheverry Hall, Berkeley, CA 94720-1730 USA
2Department of Science and Technology- Philippine Nuclear Research Institute,
Nuclear Materials Research, Commonwealth Avenue, Diliman, Quezon City 1101, Philippines
3Japan Atomic Energy Agency, Nuclear Hydrogen and Heat Application Research Center, 4002 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1393 Japan
4International Atomic Energy Agency, Division of Nuclear Power, VIC, PO Box 100, 1400 Vienna, Austria
5International Atomic Energy Agency, Terrestrial Environment Laboratory, 2444 Seibersdorf, Austria
6Jožef Stefan Institute, Jamovacesta 39, 1000 Ljubljana, Slovenia
7Radiation Protection Department, Mubarak Al Kabir Street,
PO Box 16087, 35851 Qadeseyah, Kuwait
8Florida Industrial and Phosphate Research Institute,
1855 West Main Street, Bartow, FL 33830-7718 USA
9Braunschweig University of Technology, Department of Life Sciences,
Pockelstraße 14, 38106 Braunschweig, Germany
corresponding author: This email address is being protected from spambots. You need JavaScript enabled to view it.



The Philippines may profit from extracting uranium (U) from phosphoric acid during fertilizer production in a way that the recovered U can be beneficiated and taken as raw material for nuclear reactor fuel. Used in a high temperature reactor (HTR) that provides electricity and/or process heat for fertilizer processing and U extraction, energy-neutral fertilizer production, an idea first proposed by Haneklaus et al.,is possible. This paper presents a first case study of the concept regarding a representative phosphate fertilizer plant in the Philippines and exemplary HTR designs (HTR50S and GTHTR300C) developedby the Japan Atomic Energy Agency (JAEA). Three different arrangements (version I-III), ranging from basic electricity supply to overall power supply including on site hydrogen production for ammonia conversion, are introduced and discussed.


The International Atomic Energy Agency (IAEA) recently proposed a Coordinated Research Project (CRP) that among other issues aims to assess whether or not energy neutral mineral processing is technically and economically feasible (Haneklaus et al. 2014a). Phosphate rock contains considerable amounts of naturally occurring uranium (U) (Schnug and Haneklaus 2013) . . . . . [DOWNLOAD FULLTEXT HERE]



ABOUZEID. 2007. Physical and thermal treatment of phosphate ores - An overview. International Journal of Mineral Processing 85 (2008): 59-84.
DUYVESTEYN WPC, PUTNAM GF. 2014. Scandium - A review of the element, its characteristics, and current and emerging commercial applications. EMC Metals Corporation. Retrieved from on 08 11, 2014.
GOTO M, SEKI Y, INABA Y, OHAHSI H, SATO H, FUKAYA Y, TACHIBANA Y. 2012. 小型高温ガス炉システムの概念設計(Ⅱ)-核設計-Conceptual Design of Small-sized HTGR System (II). Oarai, Japan: Japan Atomic Energy Agency - JAEA-Technology. p. 2012-017 (in Japanese).
HABASHI, FATHI. 1985. The recovery of the lanthanides from phosphate rock. J Chem Tech Biotechnol 35A: 5-14.
HANEKLAUS N, REITSMA F, TULSIDAS H, TYOBEKA B, SCHNUG E, ALLELEIN HJ, BRIAN BK, PETERSON PF, DYCK G, KOSHY T. 2014a. Using High Temperature Reactors for Energy Neutral Mineral Development Processes - A proposed IAEA coordinated research project. In: Proceedings of the international symposium on uranium raw material for the nuclear fuel cycle: Exploration, mining, production,supply and demand, economics and environmental issues (URAM 2014); 2014 June 23-27;  Vienna, Austria: Springer International Publishing.(in press).
HANEKLAUS  N, TULSIDAS H, REITSMA  F, SCHNUG  E. 2014b. Using high temperature reactors for energy neutral phosphate fertilizer and phosphogypsum processing. In: Proceeding of the 7th International Conference on Uranium Mining and Hydrogeology (UMH VII); 2014 September 21-25; Freiberg, Germany: Springer International Publishing. p. 785-791.
HANEKLAUS N, SCHNUG E, TULSIDAS H, TYOBEKA B. 2015. Using high temperature gas-cooled reactors for greenhouse gas reduction and energy neutral production of phosphate fertilizers. Annals of Nuclear Energy 75 (2015): 275-285.
HILTON  J. 2010. Phosphogypsum (PG) Uses and current handling practices worldwide. 25th Annual Lakeland Regional Phosphate Conference, October 13-14, 2010.
[IAEA] International Atomic Energy Agency. 1987. IAEA TECDOC 533 - The Recovery of Uranium from Phosphoric Acid. Vienna, Austria: International Atomic Energy Agency. p. 41.
[IAEA] International Atomic Energy Agency. 2012. TECDOC-1674 - Advances in High Temperature Gas Cooled Reactor Fuel Technology. Vienna, Austria: International Atomic Energy Agency. p. 21-22.
IAEA. 2013. Radiation Protection and Management of Norm Residues in the Phosphate Industry. Safety Reports Series No. 78. Vienna: International Atomic Energy Agency. p. 111.
[IIP] Institute for Industrial Productivity. 2009. Ammonia. Institute for Industrial Productivity. Accessed 2014 August 5.
[IMPHOS] Institut Mondiale du Phosphate. 2009. Newsletter Uranium recovery from phosphoric acid. Retrieved from on 2013
[INL] Idaho National Laboratory. 2010. Technical Evaluation Study Project No. 23843 Nuclear-Integrated Ammonia Production Analysis. Idaho National Laboratory. p. 27.
[IPNI] International Plant Nutrition Institute. 2011. Nutrient Source Specific - Diammonium Phosphate. International Plant Nutrition Institute. Retrieved from$FILE/NSS-17%20Diammonium%20Phosphate.pdf. 08 01, 2014
JOHNSON MC, PALOU-RIVERA I, FRANK ED. 2013. Energy consumption during the manufacture of nutrients for algae cultivation. Algal Research Vol. 2, 214: 426-436.
KAUWENBERGH. 2010. World Phosphate Rock Reserves and Resources. Muscle Shoals, Alabama: International Fertilizer Development Center. p. 3-5.
KENT JA. 2012. Handbook of Industrial Chemistry and Biotechnology. DOI 10.1007/978-1-4614-4259-2_1, Springer Science+Business Media New York 2012
KNOLLE F, BIRKE M, HASSOUN R, JACOBS F, SCHNUG E. 2011. Uranium in German mineral water – occurrence and origins. In: Merkel B, Schipek M., The New Uranium Mining Boom 749 DOI 10.1007/978-3642-22122-4. p. 749-754
KOULOHERIS AP. 1981. Evaluation of potential commercial processes for the production of sulfuric acid from phosphogypsum. Bartow, Florida: Florida Institute of Phosphate Research. p. 18-22.
KOURAIM MN, FAWZY MM, HELALY OS. 2014. Leaching of Lanthanides from Phosphogypsum Waste using Nonyl Phenol Ethoxylate Associated with HNO3 and HCl. International Journal of Sciences: Basic and Applied Research (IJSBAR) 16 (2): 31-44.
KRATZ S, SCHNUG E. 2006. Rock phosphates and P fertilizers as sources of U contamination in agricultural soils. In: Uranium in the Environment, by Merkel BJ, Hasche-Berger A., Berlin: Springer. p. 57-67.
KUNITOMI K, YAN X, NISHIHARA T, SAKABA N, MOURI T. 2007. JAEA’s VHTR for hydrogen and electricity cogeneration: GTHTR300C. Nuclear Engineering and Technology 39(1): 9-20.
METAL-PAGES. 2014. Metal Pages. Metal-Pages Ltd 2000 - 2014. August 11. Accessed 08 11, 2014.
OHASHI H, SATO H, GOTO M, YAN X, SUMITA J, TAZAWA Y, NOMOTO Y, AIHARA J, INABA Y, FUKAYA Y, NOGUCHI H, IMAI Y, TACHIBANA Y. 2013. A Small-sized HTGR system design for multiple heat applications for developing countries. International Journal of Nuclear Energy Volume 2013: Article ID 918567 (
OLCHONDRA RT. 2014. Business Inquirer. Leyte plants back in operation by Q3, says EDC. 01 19. Accessed 08 11, 2014.
[PHILPHOS] Philippine Phosphate Fertilizer Corporation. 2005. Plant Production Units. Philippine Phosphate Fertilizer Corporation. Retrieved from on 07 31, 2014.
[PHILPHOS] Philippine Phosphate Fertilizer Corporation. 2014. Plant Production Units. Philippine Phosphate Fertilizer Corporation. Retrieved from on 0621, 2015.
ROGASIK J, KRATZ S, FUNDER U, PANTEN K, SCHNUG E, BARKUSKY D, BAUMECKER M, GUTSER R, LAUSEN P, SCHERER HW, SCHMIDT L. 2008. Uranium in soils of German long-term fertilizer trials. In: Loads and fate of fertilizer-derived uranium. De Kok LJ, Schnug E (Eds). Leiden, The Netherlands: Backhuys Publishers. p. 135-146.
SCHNUG E, HANEKLAUS N. 2012. Environmental Prospects of Uranium from Mineral Phosphates. International Journal for Nuclear Power. 57(12): 750-752.
SCHNUG E, HANEKLAUS N. 2014. “Uranium the hidden treasure in phosphates”, Conf. Proc. 2nd International Symposium on Innovation and Technology in the Phosphate Industry (Symphos 2013). Procedia Engineering 83: 265-269. doi:10.1016/j.proeng.2014.09.001.
STEWART D. 2014. Ytterbium Element facts, Accessed 15.10.2014.
TAKEI M, KOSUGIYAMA S, MOURI T, KATANISHI S, KUNITOMI  K. 2006. 高温ガス炉ガスタービン発電システム(GTHTR300)の経済性評価 - Economical Evaluation on Gas-Turbine High Temperature Reactor 300 (GTHTR300) (in Japanese).“ 日本原子力学会和文論文誌 5 (2): 109-117.
ULRICH AE, SCHNUG E, PRASSER  HM, FROSSARD E. 2014. Uranium endowments in phosphate rock. Science of the Total Environment 478(2): 226-234.
[UNIDO/IFDC] United Nations Industrial Development Organization/International Fertilizer Development Center. 1998. Fertilizer Manual. Dordrecht, The Netherlands: Kluwer Academic Publishers. p. 535-537.
YAN X, NOGUCHI H, SATO H,TACHIBANA Y, KUNITOMI K, HINO R. 2014. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East. Nuclear Engineering and Design 271: 20-29.
YAN X, HINO R. 2011. Nuclear Hydrogen Production Handbook. Boca Raton, FL: CRC Press Taylor&Francis Group. p. 211-213.