Substrate Dependent Production and Isolation of an Extracellular Biosurfactant from Saccharomyces cerevisiae 2031


Virgie A. Alcantara1*, Irene G. Pajares1, Jessica F. Simbahan1,
and Ma. Leah D. Rubio2

1Environmental and Industrial Biotechnology Program, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines, Los Baños
2Thesis Student, B.S. Biochemistry, University of the Philippines - Manila

corresponding author: This email address is being protected from spambots. You need JavaScript enabled to view it.




Improvements of both biomass yield and emulsification activity are important criteria for profitable biosurfactant production. In this study, Saccharomyces cerevisiae 2031 gave the highest emulsification activity (E24 = 58%) by using Cooper and Paddock’s basal medium, containing glucose and waste cooking oil as carbon sources. Glucose and waste cooking oil were found to be essential for high biomass and emulsification activity. Emulsification activity of the biosurfactant increased to 76% after optimization of fermentation conditions. The optimum carbon source concentration for both glucose and waste cooking oil was 5%. Optimum pH for high biomass production was pH 5.0 – 8.0. Isolation of the biosurfactant by heat treatment of the S. cerevisiae 2031 cells effectively solubilised the extracellular biosurfactant.



Biosurfactants or microbial surfactants are surface active biomolecules produced by microorganisms. These molecules are capable of reducing surface and interfacial tensions in both aqueous solutions and hydrocarbon mixtures (Ferraz et al. 2010). They include low-molecular-weight glycolipids, lipopeptides and high-molecular-weight polysaccharide-protein-fatty acid complexes (Ron and Rosenberg 2001). High molecular weight biosurfactants produce stable emulsions without lowering surface or interfacial tension and they are called bioemulsifiers (Bognolo 1999). The biosurfactant from S. cerevisiae 2031, possessed these aforementioned characteristics as shown by its high emulsification activity and stability (Edding 2009).. . . . . . . . . . . . .





ABOUSEOUD M, MAACHI R, AMRANE A, BOUDERGUA S, NABI A. 2008. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223: 143-151.

ABU-RUWAIDA AS, BANAT MH, SALEM S, KADIRI, A. 1991. Isolation of biosurfactant producing bacteria, product characterization and evaluation. Acta Biotechnol 11: 315-324.

ABRAMOVA N, SERTIL O, MEHTA S, LOWRY CV, 2001. Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. J Bacteriol 183: 2881-87.

ADEBUSOYE SA, AMUND OO, ILORI MO, DOMEIH DO, OKPUZOR J. 2008. Growth and biosurfactant synthesis by Nigerian hydrocarbon-degrading estuarine bacteria. Rev Biol (Int J Trop Biol) 56(4): 1603-11.

BANAT IM. 1995. Biosurfactant production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review. Bioresource Technol 51: 1-12.

BANAT IM, SAMARAH N, MURAD M, HORNE R, BENERJEE S. 1991. Biosurfactant production and use in oil tank clean- up. World J Microbiol Biotechnol 7: 80-84.

BOGNOLO G. 1999. Biosurfactants as emulsifying agents for hydrocarbons. Colloids and Surfaces 152: 41-52.

CAMEOTRA SS, MAKKAR, RS. 2004. Recent applications of biosurfactant as biological and immunological molecules. Curr Opin Microbiol 7: 262-266.

CAMERON DR, COOPER DG, NEUFELD RJ. 1988. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl and Environ Microbiol 54: 1420-25.

CIRIGLIANO CC, CARMAN GM. 1984. Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48: 747-750.

COOPER D, GOLDENBERG B. 1986. Surface active agents from two Bacillus species. Appl. Environ. Microbiol 53: 224-229.

COOPER DG, PADDOCK DA. 1984. Torulopsis petrophilum and Surface Activity. Appl Environ Microbiol 46: 1426-29.

COOPER DG, ECCLES RA, SHEPPARD JD. 1988. The effect of surfactants on peat dewatering. Can J Chem Eng 66: 393-397.

DAS, P. MUKHERJEE S, SEN R. 2009. Substrate dependent production of extracellular biosurfactant by a marine bacterium. Biores Tech 100: 1015-19.

DE LIMA CJB, RIBEIRO EJ, SERVULO EFC, RESENDE MM, CARDOSO VL. 2008. Biosurfactant production by Pseudomonas aeruginosa. Appl Biochem Biotech 156-158.

DESAI JD, BANAT IM. 1997. Microbial production of biosurfactants and their commercial potential. Microbiol Mol Biol Rev 61: 47-64.

DOS SANTOS SC, FERNANDEZ LG, ROSSI-ALVA JC, DE ABREU ROQUE MR. 2010. Evaluation of substrates from renewable sources in biosurfactant production by Pseudomonas strains. African J Biotechnol 9(35): 5074-5711.

EDDING SN. 2009. A multi-step recovery strategy for the isolation of a biosurfactant from Saccharomyces cerevisiae 2031. B.S. Thesis. Manila: University of the Philippines.

FERRAZ C, DE ARAUJO AA, PASTORE GM. 2002. The influence of vegetable oils. Biotechnol (98-100): 841-847.

FERRAZ C, DE ARAUJO AA, DE SOUZA RR. 2010. Biosurfactant production optimization using response surface. Poster paper presented at the 32nd Symposium on Biotechnology for Fuels and Chemicals.

FREIMUND S, SAUTER M, KAPPELI O, DUTLER H. 2003. A new non-degrading isolation process for 1,3-Ɓ-D-glucan of high purity from baker’s yeast Saccharomyces cerevisiae. Carbohyd Polymers 54: 159-171.

GERHARDT P, DREW SW. 1994. Liquid culture. Methods for General and Molecular Bacteriology. New York: ASM Press 225-247.

GOBBERT U, LANG S, WAGNER F. 1984. Sophorose lipid formation by resting cells of Torulopsis bombicola. Biotechnol Lett 6: 225-230.

GUERRA-SANTOS LH, KAPPELI O, FIECHTER A. 1984. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Microbiol Biotechnol 48: 301-305.

ILORI MO, AMOBI CJ, ODOCHA AC. 2005. Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61: 985-992.

IYER A, MODY K, JHA B. 2006. Emulsifying properties of a marine bacterial exopolysaccharide. Enzyme Microbiol Technol 38: 220-222. 

KAPPELI O, FIECHTER A. 1977. Component from the cell surface of the hydrocarbon-utiizing yeast Candida tropicalis with possible relation to hydrocarbon transport. J Bacteriol 131: 917-921.

LIU XY, WANG Q, CUI SW, LIU HZ. 2008. A new isolation method of β-d-glucans from spent yeast Saccharomyces cerevisiae. J Foodhyd 22(2): 239-247.

MAKKAR RS, CAMEOTRA SS. 1999. Biosurfactant production by microorganisms on unconventional carbon sources. J Surfact Deterg 2: 237-241.

MAKKAR RS, CAMEOTRA SS. 2002. Effects of various nutritional supplements on biosurfactant production by a strain of Bacillus subtilis at 45ºC. J Surfact Deterg 5: 11-17.

MOUKADIRI I, ARMERO J, ABAD A, SENTANDREU R, ZUECO J. 1997. Identification of a mannoprotein present in the inner layer of the cell wall of Saccharomyces cerevisiae. J Bacteriol 179: 2154-62.

MOUSSA TAA, AHMED GM, ABDEL-HAMID SM. 2006. Optimization of cultural conditions for biosurfactant production from Nocardia amarae. J Appl Sci Res 2: 844-850.

MULLIGAN CN. 2005. Environmental applications for biosurfactants. Environ Pollut 133: 183-198.

NAVON-VENEZIA S, ZOSIM Z, GOTTLIEB A, LEGMANN R, CARMELI S, RON EZ, ROSENBERG E. 1995. Alasan, a New Bioemulsifier from Acinetobacter radioresistens Appl Environ Microbiol 61(9): 3240-44.

PANILAITIS B, CASTRO GR, SOLAIMAN D,KAPLAN DI. 2007 Biosynthesis of emulsion biopolymers from agro-based feedstocks. J Appl Microbiol 102: 531-537.

PEAT S, WHELAN WJ, EDWARDS TE. 1998. Polysaccharides of baker’s yeast Part IV. Mannan. J Chem Soc London 29-34.

RAZA ZA, KHAN MS, KHALID ZM. 2007. Evaluation of distant carbon sources in biosurfactant production by a gamma ray-induced Pseudomonas putida mutant. Process Biochem 42: 686-692.

ROBERT M, MERCADE ME, BOSCH MP, PARRA JL, ESPUNY MJ, MANRESA MA, GUINEA J. 1989. Effect of the carbon source on biosurfactant production by P. aeruginosa 44T1. Biotechnol Lett 11(12): 871-874.

RODRIGUES L, BANAT IM, OLIVEIRA R. 2006. Biosurfactants: potential applications in medicine. J Antimicrobial Chemotheraphy 57: 609-618.

RON EZ, ROSENBERG E. 2001. Natural roles of biosurfactants. Environ Microbiol 3(4): 229-236.

ROSENBERG E, RON EZ. 1999. High and low molecular weight mass microbial surfactants. Appl Microbio. Biotechno. 52: 154-162.

SARUBBO LA, DE LUNA J, DE CAMPOS-TAKAKI GM. 2006. Production and stability studies of the bioemulsifier obtained from a new strain of Candida glabrata UCP 1002. Electronic J Biotechnol 9: 400-405.

SEN R. 1997. Response surface optimization of the critical media components for the production of surfactin. J Chem Tech Biotechnol 68: 263-270.

SHAH V, JURJEVIC M, BADIA D. 2008. Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol Progress 23(2): 512-515.

SINGH P, CAMEOTRA S. 2004. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22: 142-146.

SYLDATK C, WAGNER F. 1987. Production of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC (eds). Biosurfactants and Biotechnology New York: Marcel Dekker. 89-120.

THANIYAVARN J , CHONGCHIN A , WANITSUKSOMBUT N, THANIYAVARN S, PINPHANICHHAKARN P. 2006. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. J Gen Appl Microbiol 52. 215-222.

TOREN A, NAVON-VENEZIA S, RON EZ, ROSENBERG E. 2001. Emulsifying activities of purified alasan proteins from Acinetobacter radioresistens KA53. Appl Environ Microbiol 67: 1102-06.

U.S. ENVIRONMENTAL PROTECTION AGENCY. 1999. Method 1664, revision A: n-hexane extractable material (HEM; oil and grease) and silica gel treated n-hexane extractable material (SGT-HEM; nonpolar material) by extraction and gravimetry. EPA821-R-98-002.

YABES M. 2002. Isolation, screening and characterization of yeasts for biosurfactant production using waste cooking oil as substrate. [M.S. Thesis] College, Laguna: University of the Philippines. Los Baños

ZAJIC JE, SEFFENS W. 1984. Biosurfactants. CRC Crit Rev Biotechnol 1: 87-107.

ZINJARDE SS, PANT A. 2002. Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. J Basic Microbiol 42: 67-73.

ZECHNER-KRPAN, PETRAVIC-TOMINAC V, GOSPODARIC I, SAJLI L, DAKOVIC S & FILIPOVIC-GRCIC J. 2010. Characterization of Ɓ-glucans isolated from Brewer’s yeast and dried by different methods. Food Technol Biotechnol 48(2): 189-197.

ZOSIM Z, FLEMINGER G, GUTNICK D, ROSENBERG E, WISE G. 1989. Effect of protein on the emulsifying activity of emulsan. J Dispersion Sci Technol 10(3): 307-317.