Proto-ubiquitin: A Bayesian Prediction of an Ancient Protein During the Prokaryotic-Eukaryotic Transition
Custer C. Deocaris1*, Lovette F. Cunanan2, Richelda A. Galapia2,
and Marla A. Endriga2
1College of Home Economics, University of the Philippines,
Diliman, Quezon City
2Department of Biology, College of Arts and Sciences,
University of the Philippines Manila, Ermita, 1000 Manila, Philippines
corresponding author: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Only recently have biologists been able to apply mathematical and biochemical tools to preview lifestyles of ancient life forms and "travel back in time." In this paper, we describe an ancestral reconstruction of ubiquitin to determine its molecular properties during the rise of the eukaryotes. Although ubiquitin is one of the most conserved proteins in eukaryotes, no ubiquitin homolog has been found in prokaryotic genomes sequenced thus far. In an attempt to derive the ancestral ubiquitin, or proto-ubiquitin (proto-Ub), we applied Bayesian statistical theory to estimate posterior probabilities of protein sequences from a minimum evolution tree of 30 extant species. The inferred ancestral sequence was 100% homologous with the ubiquitin of Brugia malayi, a parasitic nematode. Among its 76 amino acids, only nine residues have undergone amino acid modification. As no major structural and functional changes happened during the evolution of ubiquitin, we hypothesize that the stressful conditions that led to the creation of this gene after the "Great Oxidation Event" 2.4 billion years ago may have already been "buffered" to date.
INTRODUCTION
What was Earth like when eukaryotes were just starting to emerge from the oceans? Planetary biologists widely believe that proteotoxic stress from increasing oxygen levels and ocean temperatures around 2 billion (Gyr) years ago prompted the origin of the first eukaryote via endosymbiosis (reviewed recently by Deocaris et al. 2010), and that the steady build-up of oxygen by cyanobacterial photosynthesis helped create the Earth's early atmosphere . . . . . . . . .
REFERENCES
ACQUISTI C, KLEFFE J, COLLINS S. 2007. Oxygen content of transmembrane proteins over macroevolutionary time scales. Nature 445(7123): 47-52.
AGUILAR RC, WENDLAND B. 2003. Ubiquitin: not just for proteasomes anymore. Current Opinion in Cell Biology 15: 184-190.
ALTSCHUL S, GISH W, MILLER W, MYERS E, LIPMAN D. 1990. Basic Local Alignment Search Tool. Journal of Molecular Biology 215: 403-410.
ARNOLD K, BORDOLI L, KOPP J, SCHWEDE T. 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics 22: 195-201.
BERNER RA. 1999. Atmospheric oxygen over Phanerozoic time. Proceedings of the National Academy of Sciences USA 96: 10955-7.
BIENKOWSKA JR, HARTMAN H, SMITH TF. 2003. A search method for homologs of small proteins. Ubiquitin-like proteins in prokaryotic cells? Protein Engineering 16(12): 897-904.
BOECKMANN B, BAIROCH A, APWEILER R, BLATTER M-C, ESTREICHER A, GASTEIGER E, MARTIN MJ, MICHOUD K, O'DONOVAN C, PHAN I, PILBOUT S, SCHNEIDER M. 2003. The Swiss-Prot Protein Knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 31: 365-370.
CATLING DC, ZAHNLE KJ, MCKAY C. 2001. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293(5531): 839-43.
CHEN X, SOLOMON WC, KANG Y, CERDA-MAIRA F, DARWIN KH, WALTERS KJ. 2009. Prokaryotic ubiquitin-like protein pup is intrinsically disordered. Journal of Molecular Biology 392: 208-217.
CHENNA R, SUGAWARA H, KOIKE T, LOPEZ R, GIBSON TJ, HIGGINS DG, THOMPSON JD. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research 31(13): 3497-500.
CIECHANOVER A. 2006. The ubiquitin proteolytic system: from an idea to the patient bed. Proceedings of the American Thoracic Society 3: 21-31.
DARWIN KH. 2009. Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nature Reviews Microbiology 7: 485-491.
DEOCARIS CC, KAUL SC, WADHWA R. 2006. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress and Chaperones 11(2): 116-28.
DEOCARIS CC, KAUL SC, WADHWA R. 2010. Mitochondrial heat shock proteins and the 2 billion year old story of distress. Advances in Mitochondrial Medicine. Roberto Scatena, (ed). UK: Springer Publications [in press].
FALKOWSKI PG, ISOZAKI Y. 2008. Geology: The story of O2 . Science 322(5901): 540-2.
FALKOWSKI PG, KATZ ME, KNOLL AH, QUIGG A, RAVEN JA, SCHOFIELD O, TAYLOR FJ. 2004. The evolution of modern eukaryotic phytoplankton. Science 305(5682): 354-60.
FESTA RA, MCALLISTER F., PEARCE MJ, MINTSERIS J, BURNS KE, GYGI SP, DARWIN KH. 2009. Prokayrotic Ubiquitin-Like Protein (Pup) Proteome of Mycobacterium tuberculosis. PLoS ONE 5(1): e8589.
GASTEIGER E, HOOGLAND C, GATTIKER A, DUVAUD S, WILKINS MR, APPEL RD, BAIROCH A. 2005. Protein Identification and Analysis Tools on the ExPASy Server. In: The Proteomics Protocols Handbook. John M. Walker (ed). New York: Humana Press. p. 571-607.
GAUCHER EA. 2007. Ancestral sequence reconstruction as a tool to understand natural history and guide synthetic biology: Realizing (and extending) the vision of Zukerkandl and Pauling. In: Ancestral Sequence Reconstruction. David Liberles (ed). United Kingdom: Oxford University Press. p. 20-33.
GAUCHER EA, GOVINDARAJAN S, GANESH OK. 2008. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451(7179): 704-7.
GAUCHER EA, THOMSON JM, BURGAN M, BENNER S. 2003. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425: 285-288.
GHEDIN E, WANG S, SPIRO D, CALER E, ZHAO Q, CRABTREE J, ALLEN JE, DELCHER AL, GUILIANO DB, MIRANDA-SAAVEDRA D, ANGIUOLI SV, CREASY T, AMEDEO P, HAAS B, EL-SAYED NM, WORTMAN JR, FELDBLYUM T, TALLON L, SCHATZ M, SHUMWAY M, KOO H, SALZBERG SL, SCHOBEL S, PERTEA M, POP M, WHITE O, BARTON GJ, CARLOW CKS, CRAWFORD MJ, DAUB J, DIMMIC MW, ESTES CF, FOSTER JM, GANATRA M, GREGORY WF, JOHNSON NM, JIN J, KOMUNIECKI R, KORF I, KUMAR S, LANEY S, LI B, LI W, LINDBLOM TH, LUSTIGMAN S, MA D, MAINA CV, MARTIN DMA, MCCARTER JP, MCREYNOLDS L, MITREVA M, NUTMAN TB, PARKINSON J, PEREGRÍN-ALVAREZ JM, POOLE C, REN Q, SAUNDERS L, SLUDER AE, SMITH K, STANKE M, UNNASCH TR, WARE J, WEI AD, WEIL G, WILLIAMS DJ, ZHANG Y, WILLIAMS SA, FRASER-LIGGETT C, SLATKO B, BLAXTER ML, SCOTT AL. 2007. Draft genome of the filarial nematode parasite Brugia malayi. Science 317(5845): 1756-1760.
GREGORY R. 2008. Understanding evolutionary trees. Evolution: Education Outreach 1: 121-137.
GUEX N, PEITSCH MC. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18: 2714-23.
HAAS AL, BRIGHT PM. 1985. The immunochemical detection and quantitation of intracellular ubiquitin protein conjugates. Journal of Biological Chemistry 260: 12464-73.
HAN TM, RUNNEGAR B. 1992. Macroscopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron formation, Michigan. Science 257: 232-235.
HOCHSTRASSER M. 2009 Origin and Function of Ubiquitin-like Protein Conjugation. Nature 458(7237): 422-429.
KNAUTH LP, LOWE DR. 2003. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geological Society of America Bulletin 115: 566-580.
MACE R, HOLDEN CJ. 2005. A phylogenetic approach to cultural evolution. Trends in Ecology and Evolution 20: 116-21.
MCGRATH JP, JENTSCH S, VARSHAVSKY A. 1991. UBA1: an essential yeast gene encoding ubiquitin activating enzyme. EMBO Journal 10: 227-236.
NAUJOKAT C, SARI T. 2007. Concise review: role and function of the ubiquitin-proteasome system in mammalian stem and progenitor cells. Stem Cells 25: 2408-18.
POOLE B, OHKUMA S, WARBURTON MJ. 1978. Some aspects of the intracellular breakdown of exogenous and endogenous proteins. In: Protein turnover and lysosome. Segal HL, Doyle DJ (eds). New York: Academic Press. p. 43-58.
NEI M, KUMAR S. 2000. Molecular Evolution and Phylogenetics. New York: Oxford University Press. 339p.
RAMBAUT A, ROBERTSON DL, PYBUS OG, PEETERS M, HOLMES EC. 2001. Phylogeny and the origin of HIV-1. Nature 410: 1047-8.
RASMUSSEN B, FLETCHER IR, BROCKS JJ, KILBURN MR. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455(7216): 1101-4.
RUDOLPH MJ, WUEBBENS MM, RAJAGOPALAN KV, SCHINDELIN H. 2001. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nature Structural Biology 8: 42-46.
RZHETSKY A, NEI M. 1992. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. Journal of Molecular Evolution 35(4): 367-75.
SAITOU N, NEI M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-25.
SAYLE R, MILNER-WHITE EJ. 1995. RasMol: Biomolecular graphics for all. Trends in Biochemical Sciences 20(9):374.
SCHWEDE T, KOPP J, GUEX N, PEITSCH MC. 2003 SWISS-MODEL: an automated protein homology modeling server. Nucleic Acids Research 31: 3381-85.
SHARP PM, LI W-H. 1987. Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. Journal of Molecular Biology 25: 58-64.
TAKEUCHI J, CHEN H, HOYT MA, COFFINO P. 2008. Structural elements of the ubiquitin-independent proteasome degron of ornithine decarboxylase. Biochemical Journal 410(2): 401-407.
TAMURA K, DUDLEY J, NEI M, KUMAR S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-99.
VOGEL G. 1997. Phylogenetic analysis: Getting its day in court. Science 275: 1559-60.
VRANA PB, WHEELER WC. 1996. Molecular evolution and phylogenetic utility of the polyubiquitin locus in mammals and higher vertebrates. Molecular Phylogenetic Evolution 6(2): 259-69.
WANG C, XI J, BEGLEY TP, NICHOLSON LK. 2001. Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nature Structural Biology 8(1): 47-51.
WOSTMANN C, TANNICH E, BAKKER-GRUNWALD T. 1992. Ubiquitin of Entamoeba histolytica deviates in six amino acid residues from the consensus of all other known ubiquitins. FEBS Letters 308(1): 54-58.
YANG D, OYAIZU Y, OYAIZU H, OLSEN GJ, WOESE CR. 1985. Mitochondrial origins. Proceedings of the National Academy of Sciences USA 82(13): 4443-7.
YANG Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24(8): 1586-91.
ZWICKL P, VOGES D, BAUMEISTER W. 1999. The proteasome: a macromolecular assembly designed for controlled proteolysis. Philosophical Transactions of the Royal Society B: Biological Sciences 345: 1501-11.