MENU

 

Some Biophysical Changes in the Chloroplasts of a Dracaena Radiation-Mutant

 

Maria Teresa L. Palamine1, Rommel Gavino A. Cureg1, Lucia J. Marbella2,
Avelina G. Lapade2, Zenaida B. Domingo1 and Custer C. Deocaris2,3,4,*

1Liquid Crystal Laboratory, National Institute of Physics
University of the Philippines, Diliman, Quezon City, Philippines
2Philippine Nuclear Research Institute (PNRI)
Commonwealth Avenue, Diliman, Quezon City, Philippines
3Department of Chemistry and Biotechnology, University of Tokyo
7-3-1, Hongo, Tokyo, Japan
4Gene Function Research Center, 1-1-1 Higashi
AIST Central 4, Tsukuba 305-8562, Japans

corresponding author: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Chlorophyll mutation is one of the most frequent phenotypes observed during radiation-induced mutation breeding of Dracaena sanderiana var. virescens (common name: green cornplant). Spectral analysis of a stable mutant line irradiated at 20 Gy indicated a decreased ratio in chlorophylls a/b (0.74 + 0.104) compared with the wild-type mother plant (1.18 + 0.0665). Calorimetry of isolated chloroplast preparations showed a major difference in thermotropic transition in the range of -50°C to 100°C at TP of 64°C and an enthalpy of -9.68 kJ/g in the chlorophyll-mutant. As these results are consistent with the mutation phenotype and the role played by chlorophyll in lamellar organization, our study shows an interesting application of biophysics in horticulture.

 

INTRODUCTION

A number of radiation-induced variants of ornamental plants have been generated in the past years at Philippine Nuclear Research Institute. Among the popular foliage types that show interesting phenotypic changes as a result of radiation-induced mutation breeding is Dracaena sanderiana var. virescens. . . . . 

 

[DOWNLOAD FULL TEXT HERE]

 

REFERENCES

AGOSTIANO A, CATUCCI L, COLAFEMMINA G, DELA MONICA M, SHEER H. 2000. Relevance of the chlorophyll phytyl chain on lamellar phase formation and organization. Biophys Chem 84: 189-194.

ARNON DI. 1949. Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1-15.

BENNET J. 1981. Biosynthesis of the light-harvesting cholorophyll a/b protein. Eur J Biochem 118: 61-70.

BOARDMAN NK, HIGHKIN HR. 1966. Studies on a barley mutant lacking chlorophyll b. I. Photochemical activity of isolated chloroplasts. Biochim Biophys Acta 725: 384-393.

BROWN GH, WOLKEN JJ. 1979. Photoreceptor structures: the chloroplast. In: Liquid Crystals and Biological Structures. New York: Academic Press. p. 105-118.

CLEMENT-METRAL J, LEFORT-TRAN M. 1974. Relations between fluorescence and thylakoid structure in Porphyridium cruentum. Biochim Biophys Acta 333: 560-569.

DAVIES GE, BERG SP. 1981. Melittin inhibition and uncoupling of spinach thylakoids. Arch Biochem Biophys 211(1): 297-304.

DEA P, CHAN SI. 1986. Organization of chlorophyll a in bilayer membranes. The chlorophyll adimyrisoylphsphatidylcholine system. Biochim Biophys Acta 854(1): 1-8.

EICHAHACKER LA, SOLL J, LAUTERBACH P, RUDIGER W, KLEIN RR. 1990. In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a-apoproteins in barely etioplasts. J Biol Chem 265: 13596-600.

GONEN O, LEVANON H. 1984. Line-shape analysis of transient triplet electron paramagnetic resonance spectra. Application to porphyrins and cholorophylls in nematic uniaxial liquid crystals. J Phys Chem 88: 4223-28.

GOUNARIS K, BRAIN APR, QUINN PJ, WILLIAMS WP. 1984. Structural reorganization of chloroplast thylakoid membranes in response to heat-stress. Biochim Biophys Acta 766: 198-208.

KUHLBRANDT W, WANG DA, FUJIYOSHI Y. 1994. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614-620.

KARUKSTIS KK, SAUER K. 1984. Organization of the photosynthetic apparatus of the chlorina-f2 mutant of barley using chlorophyll fluorescence decay kinetics. Biochim Biophys Acta 766: 148-155.

KLEMENT H, OSTER U, RUDIGER W. 2000. The influence of glycerol and chloroplast lipids on the spectral shifts of pigments associated with NADPH: protochlorophyllide oxidoreductase from Avena sative L. FEBS Lett 480: 306-310.

HONEYCUTT RJ, NEWHOUSE KE, PALMER RG. 1990. Inheritance and linkage studies of a variegated leaf mutant in soybean. J Heredity 81: 123-126.

JOURNEAUX R, VIOVY R. 1978. Orientation of chlorophylls in liquid crystals. Photochem Photobiol 28: 243.

LAPADE AG, VELUZ AMS, MARBELLA LJ, RAMA MG. 2001. Induced mutation and in vitro culture techniques for the genetic improvement of ornamentals. Phil Nuclear J 13: 23-31.

MORGAN CG, SANDHU SS, YIANNI YP, DODD NJ. 1987. The phase behavior of dispersions of Bis-Azo-PC: photoregulation of bilayer dynamics via lipid photochromism. Biochim Biophys Acta 903(3): 495-503.

MURATA N, TROUGHTON J, FORK D. 1975. Relationships between the transition of the physical phase of membrane lipids and photosynthetic parameters in Anacystis nidulans and lettuce and spinach chloroplasts. Plant Physiol 56: 508-517.

PAULSEN H, HOBE S. 1992. Pigment-binding properties of mutant, light-harvesting chlorophyll a/b protein. Eur J Biochem 205: 71-76.

ROBERT S, TANCREDE P. 1991. The electrical and spectroscopic properties of planar asymmetrical membranes incorporating chlorophyll a and plastoquinone-9. Model of incorporation of chlorophyll a and plastoquinone-9. Biochem Cell Biol 69(1): 42-48.

SATPATHY D, AMASAN TS. 1971. Temperature sensitivity of some chlorophyll mutants in barley. Radiat Bot 4: 181-201.

SYBENGA JS. 1964. Quantitative analysis of radiationinduced sectoral discoloration of the first leaf of Crotolaria intermedia. Radiat Bot 4: 127-139.

THOMPSON LK, STURTEVAT JM, BRUDVIG GW. 1986. Differential scanning calorimetric studies of photosystem II: evidence for a structural role for cytochrome b559 in the oxygen-evolving complex. Biochem 25(20): 6161-69.