Local Fungal Endophytes as Rich Sources of Chitinase Genes
Zabrina Bernice L. Malto, Christine Jurene O. Bacal,
Mark Jeffrey S. Diaz, and Eizadora T. Yu*
Institute of Chemistry, College of Science, University of the Philippines
Diliman, Quezon City 1101 Philippines
*Corresponding Author: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
The ability of three fungal endophytes (JB10, JB11, and D12 isolates) to degrade chitin, and their potential as microbial sources of chitinases was investigated. Amplification and sequencing of the ITS regions revealed the identity of the fungal isolates: JB10 (Fomitopsis sp.), JB11 (Aspergillus tubingensis), and D12 (Daldinia eschscholzii). All three fungi were able to grow on minimal media with colloidal chitin as sole carbon source, albeit at different rates. Isolates JB11 and D12 are observed to have comparable or faster growth rates in chitin as compared to the simpler potato dextrose carbon source. Turbidimetric measurements show that the fungal cultures are able to degrade chitin with 3–5 d of incubation. While the crude, secreted proteins from these three fungi show comparable total chitinolytic activities (~0.35 U/mL), JB11 was found to have the highest exochitinase activity (~0.25 U/mL). Bioinformatic analysis of the chitinase (GH18) genes for A. tubingensis (JB11) and D. eschscholzii (D12) revealed variability in the GH18 chitinase sequences in terms of the amino acid sequences of the canonical DXXDXDXE catalytic motif as well as the presence of additional domain architectures, which make these fungi ideal sources for chitinases for both biotechnology applications and chitinase enzyme mechanistic studies.
INTRODUCTION
The processing of crustacean products generates a lot of shell waste as crustacean meat accounts for less than 50% of the animal’s body mass. Efforts to valorize and refine these crustacean shells for chemicals (e.g., amino acids, calcium carbonate, and N-acetyl glucosamine or NAG) are being explored to create a high-value supply chain for what is normally just discarded as waste (Yan and Chen 2015). While the complete breakdown of chitin to NAG is desirable, depolymerization to lower molecular weight chitin oligosaccharides (CTOS) can also yield high-value products with biomedical applications. Enzymes such as chitinases can degrade chitin into CTOS or NAG monomers by hydrolyzing the glycosidic bonds under physiological conditions. These chitin-degrading enzymes can be endochitinases, which cleave the polymer internally producing CTOS or exochitinases, which cleave the reducing end of the polymer producing NAG [for N-acetyl glucosaminidases (NAGase)] or (NAG)2 (for chitobiosidases) (Hamid 2013). These enzymes can, therefore, be used in the processing of crustacean waste to produce CTOS or NAG precursors. . . . read more
REFERENCES
BACAL CJO, YU ET. 2017. Cellulolytic Activities of a Novel Fomitopsis sp. and Aspergillus tubingensis Isolated from Philippine Mangroves. Philipp. J Sci. 146(4): 8.
BRZEZINSKA MS, JANKIEWICZ U. 2012. Production of Antifungal Chitinase by Aspergillus niger LOCK 62 and Its Potential Role in the Biological Control. Curr. Microbiol. 65(6): 666–672.
BUIST G, STEEN A, KOK J, KUIPERS OP. 2008. LysM, a widely distributed protein motif for binding to (peptido)glycans. Molecular Microbiology 68(4): 838–847.
CHAN CL, YEW SM, NGEOW YF, NA SL, LEE KW, HOH C-C, YEE W-Y NG KP. 2015. Genome Analysis of Daldinia eschscholtzii Strains UM 1400 and UM 1020, Wood-Decaying Fungi Isolated from Human Hosts. BMC Genomics 16(1): 966.
DE VRIES RP, RILEY R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram O, Benocci T, Braus-Stromeyer SA, Caldana C, Canovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, Dos Santos RA, Damasio AR, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hilden KS, Hope R, Hossain A, Karabika E, Karaffa L, Karanyi Z, Krasevec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Makela MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnar AP, Mule G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AF, Ramon A, Rauscher S, Record E, Riano-Pachon DM, Robert V, Rohrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sandor E, Sanguinetti M, Schutze T, Sepcic K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JV, Vesth TC, Visser J, Yu JH, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pocsi I, Scazzocchio C, Seiboth B, vanKuyk PA, Wortman J, Dyer PS, Grigoriev IV. 2017. Comparative genomics revels high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 18(1): 28.
El-Hadi AA, El-Nour SA, Hammad A, Kamel Z, Anwar M. 2014. Optimization of cultural and nutritional conditions for carboxymethylcellulase production by Aspergillus hortai. Journal of Radiation Research and Applied Sciences 7(1): 23–28.
Fazenda ML, Seviour R, Mcneil B, Harvey LM. 2008. Submerged Culture Fermentation of "Higher Fungi": The Macrofungi. Advances in Applied Microbiology 63: 33-103. 10.1016/S0065-2164(07)00002-0
Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge A J, Chang H-Y, Dosztányi Z, El-Gebali S, Fraser M, GOUGH J, HAFT D, HOLLIDAY GL, HUANG H, HUANG X, LETUNIC I, LOPEZ R, LU S, MARCHLER-BAUER A, MI H, MISTRY J, NATALE DA, NECCI M, NUKA G, ORENGO CA, PARK Y, PESSEAT S, PIOVESAN D, POTTER SC, RAWLINGS ND, REDASCHI N, RICHARDSON L, RIVOIRE C, SANGRADOR-VEGAS A, SIGRIST C, SILLITOE I, SMITHERS B, SQUIZZATO S, SUTTON G, THANKI N, THOMAS PD, TOSATTO SC, WU CH, XENARIOS I, YEH LS, YOUNG SY, MITCHELL AL. 2017. InterPro in 2017—Beyond Protein Family and Domain Annotations. Nucleic Acids Res. 45(D1): D190–D199.
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, SALAZAR GA, TATE J, BATEMAN A. 2016. The Pfam Protein Families Database: Towards a More Sustainable Future. Nucleic Acids Res. 44(D1): D279–D285.
Hamid R, Khan m, Ahmad m, Ahmad MM, Abdin MZ, Musarrat J, Javed S. 2013. Chitinases: An Update. J Pharm Bioallied Sci 5(1): 21–29.
Harman G, Hayes C, Lorito M, Broadway R, Di Pietro A, Peterbauer C, Tronsmo A. 1993. Chitinolytic Enzymes of Trichoderma harzianum: Purification of Chitobiosidase and Endochitinase. Phytopathology 83(3).
Hartl L, Zach S, Seidl-Seiboth V. 2012. Fungal Chitinases: Diversity, Mechanistic Properties and Biotechnological Potential. Appl. Microbiol. Biotechnol. 93(2): 533–543.
Huang Q-S, Xie X-L, Liang G, Gong F, Wang Y, Wei X-Q, WANG Q, JI ZL, Chen Q-X. 2011. The GH18 family of chitinases: Their domain architectures, functions and evolutions. Glycobiology 22(1): 23–34.
Ike M, Nagamatsu K, Shioya A, Nogawa M, Ogasawara W, Okada H, Morikawa Y. 2006. Purification, Characterization, and Gene Cloning of 46 KDa Chitinase (Chi46) from Trichoderma reesei PC-3-7 and Its Expression in Escherichia coli. Appl. Microbiol. Biotechnol. 71(3): 294–303.
KARLSSON M, STENLID J. 2008. Comparative Evolutionary Histories of the Fungal Chitinase Gene Family Reveal Non-Random Size Expansions and Contractions Due to Adaptive Natural Selection. Evol. Bioinform. Online 4: 47–60.
King BC, Donnelly MK, Bergstrom GC, Walker LP, Gibson DM. 2009. An Optimized Microplate Assay System for Quantitative Evaluation of Plant Cell Wall–Degrading Enzyme Activity of Fungal Culture Extracts. Biotechnol. Bioeng. 102(4): 1033–1044.
KUMAR S, STECHER G, TAMURA K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33(7): 1870–1874.
Lange L, Bech L, Busk PK, Grell MN, Huang Y, Lange M, Linde T, Pilgaard B, Roth D, Tong X. 2012. The Importance of Fungi and of Mycology for a Global Development of the Bioeconomy. IMA Fungus Glob. Mycol. J 3(1): 87–92.
Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, Shen Y, Shen Q. 2013. Secretome Diversity and Quantitative Analysis of Cellulolytic Aspergillus fumigatus Z5 in the Presence of Different Carbon Sources. Biotechnol. Biofuels 6(1): 149.
LU Y, ZEN K-C, MUTHUKRISHNAN S, KRAMER KJ. 2002. Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochemistry and Molecular Biology 32(11): 1369–1382.
MURTHY NKS, BLEAKLEY BH. 2012. Simplified Method of Preparing Colloidal Chitin Used For Screening of Chitinase- Producing Microorganisms. Internet J Microbiol. 10(2).
Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I. 2014. The Genome Portal of the Department of Energy Joint Genome Institute: 2014 Updates. Nucleic Acids Res. 42 (D1): D26–D31.
Olsen LR, Kudahl UJ, Simon C, Sun J, Schönbach C, Reinherz EL, Zhang GL, Brusic V. 2013. BlockLogo: Visualization of peptide and sequence motif conservation. J Immunol. Methods 400–401: 37–44.
REESLEV M, KJØLLER A. 1995. Comparison of Biomass Dry Weights and Radial Growth Rates of Fungal Colonies on Media Solidified with Different Gelling Compounds. Appl. Env. Microbiol. (61): 4236–4239.
SEIDL V. 2008. Chitinases of filamentous fungi: A large group of diverse proteins with multiple physiological functions. Fungal Biol. Rev. 22: 36–42.
STERGIOPOULOS I, VAN DEN BURG HA, OKMEN B, BEENEN HG, VAN LIERE S, KEMA GHJ, DE WIT PJGM. 2010. Tomato Cf Resistance Proteins Mediate Recognition of Cognate Homologous Effectors from Fungi Pathogenic on Dicots and Monocots. Proceedings of the National Academy of Sciences 107(16): 7610–7615.
van Munster JM, van der Kaaij RM, Dijkhuizen L, van der Maarel MJEC. 2012. Biochemical Characterization of Aspergillus niger CfcI, a Glycoside Hydrolase Family 18 Chitinase That Releases Monomers during Substrate Hydrolysis. Microbiol. 158(Pt. 8): 2168–2179.
Wu W, Davis RW, Tran-Gyamfi MB, Kuo A, LaButti K, Mihaltcheva S, Hundley H, Chovatia M, Lindquist E, Barry K, Grigoriev IV, Henrissat B, Gladden JM. 2017. Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Appl. Microbiol. Biotechnol. 101(6): 2603–2618.
YAN N, CHEN X. 2015. Sustainability: Don’t Waste Seafood Waste. Nature 524(7564): 155–157.