Draft Genome Sequences of Ralstonia solanacearum Isolated from Banana and Tomato in the Philippines
Ma. Anita M. Bautista1,2*, Jo-Hannah S. Llames1,
Emilia Andrea V. Sabban1, and Lucille C. Villegas3
1Functional Genomics Laboratory, National Institute of Molecular Biology
and Biotechnology, University of the Philippines Diliman, Quezon City 1101 Philippines
2Philippine Genome Center, University of the Philippines Diliman, Quezon City 1101 Philippines
3Microbiology Division, Institute of Biological Sciences,
University of the Philippines Los Baños (UPLB), College, Laguna 4031 Philippines
*Corresponding Author: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Ralstonia solanacearum causes bacterial wilt of several plant species, including banana and tomato. With limited options for control, understanding the molecular mechanism of pathogenicity is warranted. Herein, we report the draft genome sequences of two R. solanacearum isolates from the Philippines infecting banana and tomato. R. solanacearum 10314 was isolated from banana while R. solanacearum 10154 was isolated from tomato. Pathogenicity tests indicated that 10314 can infect both banana and tomato while 10154 can only infect tomato. In an effort to investigate the molecular basis of virulence and differential host-specificity of the isolates, whole genome sequencing was performed using the Ion Torrent Proton platform. Draft assemblies were generated using three assemblers, and the quality was evaluated using assembly metrics. Standard genome annotation was performed allowing for identification of important virulence- and host-specificity-related genes for the bacterial isolates, which provided clues underlying their differential capacity to infect banana and tomato. The availability of these data in public repositories will complement the existing data from several R. solanacearum strains, including those isolated from the Philippines; thus, it can provide essential platforms for studying R. solanacearum pathogenicity and help in the control of bacterial wilt.
INTRODUCTION
Ralstonia solanacearum is the causal agent of bacterial wilt in more than 450 plant species – including solanaceous crops, banana, groundnut, olive, ginger, gum trees, and some ornamental plants (Genin 2010, Mansfield et al. 2012). Bacterial wilt caused by this pathogen is the major factor limiting wet-season production of tomato and eggplant in Asian countries, including the Philippines, causing an increase in the price of these staple vegetables and depriving much of the population of an important source of nutrients (Opina and Miller 2005). The organism also causes “Bugtok” or the discoloration of inner tissues of fruits of cooking bananas and induces “Moko” or the wilting of Giant Cavendish banana in the Philippines (Soguilon et al. 1994). Many aspects of these wilt diseases caused by R. solanacearum must still be understood before a sustained disease management strategy can be formulated. More specifically, the nature of the causal organisms must be determined, and the genetic diversity of R. solanacearum must be analyzed (Raymundo et al. 1998). Several studies were conducted on R. solanacearum strains attacking banana in the Philippines, including a study on distinguishing banana-infecting from vegetable-infecting strains using probes (Raymundo and Ilagan 1999). Other Philippine studies on R. solanacearum include the use of probes based on extracellular polysaccharides (E36, 07, Q50), endoglucanase (pHE3), and tryptophan biosynthesis (pT161); a random clone (pZI217) to differentiate Bugtok and Moko (Raymundo et al. 1998); and establishing the relationship between bugtok and moko strains of R. solanacearum in order to understand the pathogen – which would lead to a more logical strategy for control (Ilagan et al. 2003). . . . read more
REFERENCES
AZIZ RK, BARTELS D, BEST AA, DEJONGH M, DISZ T, EDWARDS RA, FORMSMA K, GERDES S, GLASS EM, KUBAL M, MEYER F, OLSEN GJ, OLSON R, OSTERMAN AL, OVERBEEK RA, MCNEIL LK, PAARMANN D, PACZIAN T, PARRELLO B, PUSCH GD, REICH C, STEVENS R, VASSIEVA O, VONSTEIN V, WILKE A, ZAGNITKO O. 2008. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics 8(9): 75.
ANDREWS S. 2010. FastQC: A quality control tool for high throughput sequence data. Retrieved from http://www.bioinformatics.babraham.ac.uk/projects/fastqc on 14 Mar 2019.
BANKEVICH A, NURK, S, ANTIPOV D, GUREVICH A, DVORKIN M, KULIKOV A, PEVZNER PA. 2012. SPAdes: A New genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5): 455–477.
BOCSANCZY A, HUGUET-TAPIA J, NORMAN D. 2017. Comparative genomics of Ralstonia solanacearum identifies candidate genes associated with cool virulence. Front Plant Sci 8: 1565
BOLGER AM, LOHSE M, USADEL B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30(15): 2114–2120.
CHAPMAN MR, KAO CC. 1998. EpsR modulates production of extracellular polysaccharides in the bacterial wilt pathogen Ralstonia (Pseudomonas) solanacearum. J Bacteriol 180(1): 27–34.
CHEN D, LIU B, ZHU Y, WANG J, CHEN Z, CHE J, CHEN X. 2017. Complete genome sequence of Ralstonia solanacearum FJAT-1458, a potential biocontrol agent for tomato wilt. Genome Announcements 5(14): e00070–17
CHEVREUX B, WEBER J, HORSTER A, DLUGOSCH K. 2014. MIRA 4.0 Manual. Retrieved from http://mira-assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html on 14 Mar 2019.
CLARK S, EGAN R, FRAZIER P, WANG Z. 2013. ALE: A generic likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies. Bioinformatics 29(4): 435–443.
CLARK K, KARSCH-MIZRACHI I, LIPMAN DJ, OSTELL J, SAYERS, EW. 2016. NCBI GenBank. Nucleic Acids Res 44(Database issue): D67–D72.
COLL NS, VALLS M. 2013. Current knowledge on the Ralstonia solanacearum type III secretion system. Microbial Biotechnol 6(6): 614–620. doi:10.1111/1751-7915.12056
DENNY TP, HAYWARD AC. 2001. Gram-negative bacteria: Ralstonia. In: Laboratory guide for identification of plant pathogenic bacteria, 3rd ed. Schaad NW, Jones JB, Chun W eds. St. Paul, MN: APS Press. p.151–174.
DENNY TP. 2006. Plant pathogenic Ralstonia species. In: Plant-Associated Bacteria. Gnanamanickam SS ed. Dordrecht, The Netherlands: Springer. p. 573–644.
EKBLOM R, WOLF JBW. 2014. A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7(9): 1026–1042.
FLORES-CRUZ Z, ALLEN C. 2009. Ralstonia solanacearum encounters an oxidative environment during tomato infection. Mol Plant-Microbe Interact 22: 773–782.
FU L, NIU B, ZHU Z, WU S, LI W. 2012. CD-HIT: Accelerated for clustering the next generation sequencing data. Bioinformatics 28(23): 3150–3152.
FRENCH ER, GUTARRAA L, ALEY P, ELPHINSTONE J. 1995. Culture media for Pseudomonas solanacearum: isolation, identification and maintenance. Fitopatologia 30: 126–130.
GENIN S, DENNY TP. 2012. Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50: 67–89.
GENIN S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytologist 187: 920–928.
GUARISCHI-SOUSA R, PUIGVERT M, COLL NS, SIRI MI, PIANZOLLA MJ, VALLS M, SETUBAL JC. 2016. Complete genome sequence of the potato pathogen Ralstonia solanacearum UY031. Stand Genomic Sci 11: 7.
GUREVICH A, SAVELIEV V, VYAHHI N, TESLER N. 2013. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29(8): 1072–1075.
HAYWARD AC. 1964. Characteristics of Pseudomonas solanacearum. J Appl Bacteriol 27(2): 265–77.
HAYWARD AC. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29: 65–87.
HAYWARD AC, HARTMAN GL. 1994. Bacterial wilt the disease and its causative agent Pseudomonas solanacearum. CAB International. In: Association with AVRDC. Wallingford, UK.
HE LY, SEQUEIRA L, KELMAN A. 1983. Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis. 67: 1357–1361.
HUSAIN A, KELMAN A. 1958. Relation of slime production to mechanism of wilting and pathogenicity of Pseudomonas solanacearum. Phytopathology 1958; 48: 155–165.
ILAGAN YA. 1996. Analysis of genetic variation in strains of Pseudomonas solanacearum E.F. Smith through restriction fragment length polymorphism and polymerase chain reaction with emphasis on banana strains [Ph.D. Dissertation]. Laguna, Philippines: University of the Philippines Los Banos (Available at the UPLB Library).
ILAGAN YA, LAVINA, NATURAL MP, RAYMUNDO AK. 2003. Genetic homogeneity of the banana-infecting strains of Ralstonia solanacearum (Smith) Yabuuchi et al. in the Philippines. Philipp Agric Sci 86(4): 394-402.
JAIN C, RODRIGUEZ-R LM, PHILIPPY A, KONSTANTINIDIS K. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature 9: 5114.
JOHNSON M, ZARETSKAYA I, RAYTSELIS Y, MEREZHUK Y, MCGINNIS S, MADDEN TL. 2008. NCBI BLAST: A better web interface. Nucl Acids Res 36(Suppl_2): W5–W9.
KELMAN A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44: 693–695.
KOBAYASHI DY, TAMAKI SJ, KEEN NT. 1990. Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 3(2): 94–102.
LAGESEN K, HALLIN PF, RØDLAND E, STÆRFELDT HH, ROGNES T USSERY DW. 2007. RNammer: Consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res 35(9): 3100–3108.
LANE DJ. 1991. 16S/23S rDNA sequencing. In: Nucleic acids techniques in bacterial systematics/ Stackebrandt E, Goodfellow M eds. New York: John Wiley and Sons. p. 115–175.
LASLETT D, CANBACK B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32(1): 11–16. doi:10.1093/nar/gkh152
LI Z, CHEN Y, MU D, YUAN J, SH, Y, ZHANG H, GAN J, LI N, HU X, LIU B, YANG B, FAN W. 2011. Comparison of the two major classes of assembly algorithms: Overlap-layout-consensus and de-brujin-graph. Brief Funct Genomics 11(1): 25–37.
LIU H, ZHANG S, SCHELL MA, DENNY TP. 2005. Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Mol Plant-Microbe Interact 18: 1296–1305.
LOWE M, CHAN P. 2016. tRNAscan-SE On-line: Search and contextual analysis of transfer RNA Genes. Nucleic Acids Res 44: W54–57.
MACHO AP, GUIDOT A, BARBERIS P, BEUZON CR, GENIN SA. 2010. Competitive index assay identifies several Ralstonia solanacearum type iii effector mutant strains with reduced fitness in host plants. Mol Plant Microbe Interact 23: 1197–1205.
MANDAL S, DAS RK, MISHRA S. 2011. Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol Biochem 49: 117–1123.
MANSFIELD J, GENIN S, MAGORI S, CITOVSKY V, SRIARIYANUM M, RONALD P, DOW M, VERDIER V, BEER SV, MACHADO MA., TOTH I, SALMOND G, FOSTER GD. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13(6): 614–629.
MEIER-KOLTHOFF JP, AUCH AF, KLENK HP, GOKER M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
MEIER-KOLTHOFF JP, GOKER M, KLENK HP. 2014. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64: 352–356.
MENG F, YAO J, ALLEN C. 2011. AMotN mutant of Ralstonia solanacearum is hypermotile and has reduced virulence. J Bacteriol 193: 2477–2486.
MILLER SA, REZAUL KARIM AMN, BALTAZAR AM, RAJOTTE EG, NORTON GW. 2005. Developing IPM packages in Asia. In: Globalizing Integrated Pest Management: A Participatory Research Process. Norton GW, Heinrichs EA, Luther, GC Irwin ME eds. Hoboken, NJ: Blackwell Publishing. p. 27–50.
MILLER JR, KOREN S, SUTTON G. 2010. Assembly Algorithms for next-generation sequencing. Genomics 95(6): 315–327.
MILLING A, BABUJEE L, ALLEN C. 2011. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS ONE 6: e15853.
MONTECILLO AD, RAYMUNDO AK, PAPA IA, AQUINO GMB, JACILDO AJ, STOTHARD P, ROSANA ARR. 2018. Near-complete genome sequence of Ralstonia solanacearum T523, a phylotype I tomato phytopathogen isolated from the Philippines. Microbiology Resource Announcement 7: e01048-18. https://doi.org/10 .1128/MRA.01048-18
OPINA NL, MILLER SA. 2005. Evaluation of immunoassays for detection of Ralstonia solanacearum, causal agent of bacterial wilt of tomato and eggplant in the Philippines. Acta Hort 695: 353–356.
OVERBEEK R, OLSON R, PUSCH GD, OLSEN GJ, DAVIS JJ, DISZ T, EDWARDS RA, GERDES S, PARRELLO B, SHUKLA M, VONSTEIN V, WATTAM AR, XIA F, STEVENS R. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42(Database issue): D206–D214.
PEETERS N, CARRERE S, ANISIMOVA M, PLENER L, CAZALE AC, GENIN S. 2013. Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 14(1): 859.
POUEYMIRO M, GENIN S. 2009. Secreted proteins from Ralstonia solanacearum: A hundred tricks to kill a plant. Curr Opin Microbiol 12: 44–52.
PRIOR P, FEGAN M. 2005. Recent developments in the phylogeny and classification of Ralstonia solanacearum. Acta Hortic 695: 127–136.
PRIOR P, AILLOUD F, DALSING BL, REMENANT B, SANCHEZ B, ALLEN C. 2016. Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genomics 17: 90.
RAYMUNDO AK, AVES-ILAGAN Y, DENNY TP. 1998. Analysis of genetic variation of a population of banana infecting strains of Ralstonia solanacearum. In: Bacterial Wilt Disease: Molecular and Ecological Aspects. Prior PH et al. eds. Springer-Verlag Berlin Heidelberg. p. 55–60.
RAYMUNDO AK, ILAGAN YA. 1999. Cloning of a repetitive element which distinguishes banana strains of Ralstonia solanacearum in the Philippines. Philipp. Agric. Scientist 82: 338–350.
SALANOUBAT M, GENIN S, ARTIGUENAVE F, GOUZY J, MANGENOT S, ARLAT M, BILLAULT A, BROTTIER P, CAMUS JC, CATTOLICO L, CHANDLER M, CHOISNE N, CLAUDEL-RENARD C, CUNNAC S, DEMANGE N, GASPIN C, LAVIE M, MOISAN A, ROBERT C, SAURIN W, SCHIEX T, SIGUIER P, THÉBAULT P, WHALEN M, WINCKER P, LEVY M, WEISSENBACH J, BOUCHER CA. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415(6871): 497–502.
SIMÃO FA, WATERHOUSE RM, IOANNIDIS P, KRIVENTSEVA EV, ZDOBNOV EM. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19): 3210–3212.
SOGUILON CE, MAGNAYE LV, NATURAL MP. 1994. “Bugtok” disease of cooking bananas: Etiology and diagnostic symptoms. Phil Phytopath 30: 26–34.
VAN GIJSEGEM F, GENIN S, BOUCHER C. 1993. Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol 1: 175–180.
VASUDEVAN K, DEVANGA RAGUPATHI NK, JACOB JJ, VEERARAGHAVAN B. 2019. Highly accurate-single chromosomal complete genomes using IonTorrent and MinION sequencing of clinical pathogens. Genomics (in press). https://doi.org/10.1016/j.ygeno.2019.04.006
XU J, ZHENG H, LIU L, PAN Z, PRIOR P, TANG B, FENG J. 2011. Complete Genome Sequence of the Plant Pathogen Ralstonia solanacearum strain Po82. J Bacteriol. 193(16): 4261–4262.
WATERHOUSE RM, SEPPEY M, SIMÃO FA, MANNI M, IOANNIDIS P, KLIOUTCHNIKOV G, KRIVENTSEVA EV, ZDOBNOV EM. 2017. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol, (published online on 06 Dec 2017).