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The Su-Schrieffer-Heeger (SSH) model describes the dynamics of spinless fermions in a one-
dimensional lattice, with sublattices 𝑨𝑨 and 𝑩𝑩, and governed by staggered hopping potentials 𝒗𝒗 and 
𝒘𝒘 representing the intracell and intercell hopping energies, respectively. In this study, we extend 
the SSH model into three distinct types  – a trimer chain, the generalized trimer chain, and a 
hexagonal chain. The trimer chain involves three sublattices  with intracell and intercell hopping  
potentials 𝒗𝒗 and 𝒘𝒘, respectively. The generalized trimer chain incorporates the intracell hopping  
𝒗𝒗𝟏𝟏 and 𝒗𝒗𝟐𝟐 and intercell hopping 𝒘𝒘𝟏𝟏  and 𝒘𝒘𝟐𝟐  to differentiate the hopping energies between different 
sublattices in the chain. The hexagonal chain is composed of six sublattices with intracell hopping  
potential 𝒗𝒗 and intercell hopping potential 𝒘𝒘. We utilize exact diagonalization to determine the 
bulk eigenvalues of the different models. We find that in the trimer and generalized trimer chain, 
the bulk eigenvalues exhibit conducting characteristics, independent of the hopping parameter, 
owing to the presence of a flat band situated along the Fermi energy. In the hexagonal chain, the 
bulk eigenvalues display semi-metallic characteristics in the region 𝒗𝒗 < 𝒘𝒘 and metallic when 𝒗𝒗 =
 𝟎𝟎. Furthermore, we investigate the presence of conducting edge states in the finite chains. The 
trimer and hexagonal chains show the presence of topologically protected edge states which are 
manifestations of one-dimensional topological insulators. We also established the bulk-boundar y 
correspondence to calculate the winding number that predicts the existence of localized edge 
states in the topological nontrivial phase.  
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INTRODUCTION 
Recently, topological insulators  (TIs) gained a lot of attention due to their unique electrical properties as opposed to 
regular insulators. TIs are materials that have an energy band gap between the valence band and conducting band but 
have gapless edge states in one and two dimensions and surface states for 3D TIs (Asboth et al. 2015). The different  
phases of matter can be classified according to Landau’s theory of symmetry breaking  (Hasan and Kane 2010), which 
states that the different phases are due to their differences in symmetry. Furthermore, a phase transition occurs when 
there is a transition that changes the symmetry of the system (Wen 2004). However, the classification of phase 
transitions in TIs is beyond Landau’s theory. This means that TIs can have different phases at zero temperature without 
breaking symmetry and the absence of classical phase transitions  (Wen 2004). To differentiate these phases, we 
describe them by means of topological order (Guo 2016). These topological orders are generalized properties of zero  
temperature states having a finite band gap and do not change unless the system passes through a quantum phase 
transition, which is a singularity in the ground-state energy as a function of the parameters in the Hamiltonian (Wen 
2004), as the temperature is increased. Furthermore, TI’s also gained attention due to their possible applications in 
spintronics and quantum computing (Moore 2010). 
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While most TI’s are studied in two and three dimensions , one-dimensional models give us a good arena to study 
because of their reduced complexity and accessibility to experiments  (Guo 2016). A good toy model for understanding 
TIs is the Su-Schrieffer-Heeger (SSH) model (Su et al. 1979). The SSH model describes the hopping of spinless 
fermions in a 1D lattice with staggered hopping potentials. It has a topological invariant winding number that shows 
the existence of edge states and differentiates the insulating phases through a quantum phase transition  (Asboth et al. 
2015). The SSH model was first applied in the study of the trans configuration of polyacetylene, which is the simplest 
conjugated polymer with alternating single and double covalent bonds  (Su et al. 1979). Each of the carbon atoms in 
the chain forms four covalent bonds. One is with the hydrogen atom and three are with the neighboring carbon atoms. 
The SSH model can be used to find out the properties of spinless fermions in a chain such as trans-polyacetylene with 
alternating double and single bonds , represented by 𝑣𝑣 and 𝑤𝑤, as shown in Figure 1.  

 

                                       Figure 1. The trans configuration of polyacetylene. 
 

Recent theoretical extensions of the SSH model include a 1D tripartite chain (Bercioux et al. 2017), 2D systems in 
square lattices (Obana et al. 2019), and arm-chair and zigzag graphene nanoribbons (Fujita et al. 1997). In this study, 
we extend the 1D SSH model into a tripartite chain and a hexagonal chain. We then determine the eigenstates and 
eigenvalues, i.e. the band structure of the extended models , and establish the bulk-boundary correspondence to find 
out if topological edge states are present in the models. We introduce our models in Sec. II and investigate their 
corresponding eigenstates, energy spectra, and winding numbers in Section III. 

 

 

Figure 2. The trimer chain. A single unit cell is composed of three sublattices 𝐴𝐴,𝐵𝐵, and 𝐶𝐶 and is connected by the hopping energies 𝑣𝑣 and 
𝑤𝑤 . A unit cell is shown enclosed in a box. 

 

THEORETICAL MODELS 

Trimer Chain 
The trimer chain (see Figure 2) is composed of three sublattices 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶  arranged in a diamond chain with 
staggered hopping potentials 𝑣𝑣 and 𝑤𝑤 accounting for the intracell and intercell hopping energies, respectively. The 
single particle Hamiltonian for this trimer chain is given by: 
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where 𝑚𝑚 is the cell index, 𝑣𝑣 and 𝑤𝑤 are the hopping potentials, and h.c. denotes hermitian conjugation. This gives the 
matrix elements 𝐻𝐻𝑖𝑖𝑖𝑖αβ = ⟨𝑖𝑖,α|𝐻𝐻|𝑗𝑗,β⟩ , where the indices 𝑖𝑖, 𝑗𝑗 = 1,2,3, … 𝑁𝑁 denote the cell number and α,β =
𝐴𝐴, 𝐵𝐵, 𝐶𝐶 denote the sublattice index. We also set the on-site potential to zero, i.e. 𝐻𝐻𝑖𝑖=𝑖𝑖,α=β = 0. Furthermore, electron-
electron interactions are neglected. 

For the bulk, we set the boundary condition to be periodic, i.e. the Born-Von Karman condition. We consider an 
effectively infinitely long chain because of the periodic boundary condition. This also implies that the bulk now is 
translationally invariant, and Bloch’s theorem holds (Asboth et al. 2015). Our bulk Hamiltonian with the periodic 
boundary condition reads: 

𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ 𝑣𝑣(
𝑁𝑁

𝑚𝑚=1
|𝑚𝑚, 𝐵𝐵⟩⟨𝑚𝑚, 𝐴𝐴| + |𝑚𝑚, 𝐶𝐶⟩⟨𝑚𝑚, 𝐴𝐴|  + ℎ. 𝑐𝑐. )  

+ ∑ 𝑤𝑤(
𝑁𝑁

𝑚𝑚=1
| (𝑚𝑚 mod 𝑁𝑁) + 1, 𝐴𝐴⟩ ⟨𝑚𝑚,𝐵𝐵 | + |(𝑚𝑚 mod 𝑁𝑁) + 1, 𝐴𝐴⟩⟨𝑚𝑚, 𝐶𝐶|  + ℎ. 𝑐𝑐. ) 

(2) 

To account for the periodicity, we introduce terms for the hopping between sites 1𝐴𝐴 and 𝑁𝑁𝐵𝐵, 1𝐴𝐴 and 𝑁𝑁𝐶𝐶, and vice 
versa. 

 

Figure 3. The generalized trimer chain. A single unit cell is composed of three sublattices A,B, and C and connected by the hopping 
energies v1,v2,w1 and w2. A single unit cell is shown enclosed in a box. 

 

Generalized Trimer Chain 
The generalized trimer chain is a generalization of the trimer chain introduced in Sec. II A. This model differentiates 
intracell and intercell hopping energies for 𝐴𝐴𝐶𝐶 , i.e. site 𝐴𝐴 to site 𝐶𝐶  in the same unit cell, and 𝐴𝐴𝐵𝐵 , i.e. site 𝐴𝐴 to site 𝐵𝐵 in 
the same unit cell and 𝐵𝐵𝐴𝐴, i.e. site 𝐵𝐵 to site 𝐴𝐴 in the neighboring unit cell, and 𝐶𝐶𝐴𝐴, i.e. site 𝐶𝐶  to site 𝐴𝐴 in the neighboring 
unit cell, hopping energies (see Figure 3). The single-particle Hamiltonian for this model is: 

𝐻𝐻 = ∑ 𝑣𝑣1(
𝑁𝑁

𝑚𝑚=1

|𝑚𝑚, 𝐵𝐵⟩⟨𝑚𝑚, 𝐴𝐴|+ℎ. 𝑐𝑐. ) + ∑ 𝑣𝑣2(
𝑁𝑁−1

𝑚𝑚=1

|𝑚𝑚, 𝐶𝐶⟩⟨𝑚𝑚, 𝐴𝐴|+ℎ. 𝑐𝑐. ) 

 + ∑ 𝑤𝑤1(
𝑁𝑁−1

𝑚𝑚=1
|𝑚𝑚 + 1, 𝐴𝐴⟩ ⟨𝑚𝑚, 𝐵𝐵|  +  ℎ.𝑐𝑐. ) +  ∑ 𝑤𝑤2(

𝑁𝑁−1

𝑚𝑚=1
|𝑚𝑚 + 1, 𝐴𝐴⟩⟨𝑚𝑚, 𝐶𝐶| + ℎ. 𝑐𝑐. ). 

(3) 

 

𝐻𝐻 = ∑ 𝑣𝑣(
𝑁𝑁

𝑚𝑚=1
 |𝑚𝑚, 𝐵𝐵 ⟩⟨𝑚𝑚,𝐴𝐴|  +  |𝑚𝑚, 𝐶𝐶⟩⟨𝑚𝑚, 𝐴𝐴| + ℎ. 𝑐𝑐. )  + ∑ 𝑤𝑤(

𝑁𝑁−1

𝑚𝑚=1
|𝑚𝑚 + 1, 𝐴𝐴⟩ ⟨𝑚𝑚, 𝐵𝐵|  

+ |𝑚𝑚 + 1, 𝐴𝐴⟩⟨𝑚𝑚, 𝐶𝐶|  + ℎ. 𝑐𝑐. ) 

(1) 
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For the bulk part of the chain, we model it as a chain with periodic boundary conditions. The Hamiltonian for the bulk 
is: 

𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ 𝑣𝑣1(
𝑁𝑁

𝑚𝑚=1

|𝑚𝑚, 𝐵𝐵⟩⟨𝑚𝑚, 𝐴𝐴|+ℎ. 𝑐𝑐. ) + ∑ 𝑣𝑣2(
𝑁𝑁

𝑚𝑚=1

|𝑚𝑚, 𝐶𝐶⟩⟨𝑚𝑚, 𝐴𝐴|+ℎ. 𝑐𝑐. ) 

+ ∑ 𝑤𝑤1(
𝑁𝑁

𝑚𝑚=1

|(𝑚𝑚 mod 𝑁𝑁) + 1, 𝐴𝐴⟩⟨𝑚𝑚, 𝐵𝐵|+ℎ. 𝑐𝑐. ) 

+ ∑ 𝑤𝑤2(
𝑁𝑁

𝑚𝑚=1
|(𝑚𝑚 mod 𝑁𝑁) + 1, 𝐴𝐴⟩⟨𝑚𝑚, 𝐶𝐶| + ℎ. 𝑐𝑐. ). (4) The 

(4) 

The additional terms in the Hamiltonian account for the periodicity of the bulk.  

Similar to the work of Bercioux et al. (2017), we calculated the band structures of a tripartite lattice with infinite and 
finite unit cells. The Lattice I of their work is similar to our trimer chain with intercell hopping in the 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶  
sublattices. Our generalized trimer chain generalizes the tripartite system, which includes their Lattice II as a special 
case when 𝑣𝑣1 = 𝑤𝑤2 and 𝑣𝑣2 = 𝑤𝑤1 . To highlight the novelty of our work, we will show the eigenstates of the finite 
chains in the topological nontrivial and trivial regime. We will also calculate the winding number to establish the bulk-
boundary correspondence of our three model chains. 

 
 

Figure 4. The hexagonal chain. A single unit cell is composed of six sublattices 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷, 𝐸𝐸 , and 𝐹𝐹, and is connected by the hopping 
energy 𝑣𝑣 and intercell hopping energy 𝑤𝑤 . A unit cell is shown enclosed by the box. 

Hexagonal Chain 
The hexagonal chain forms a resemblance to a 1D graphene armchair ribbon, as shown in Figure 4. It consists of six 
sublattices and staggered hopping potentials 𝑣𝑣 and 𝑤𝑤 for the intracell and intercell hopping, respectively. The single-
particle Hamiltonian for this hexagonal chain is: 

𝐻𝐻 = ∑ 𝑣𝑣(
𝑁𝑁

𝑚𝑚=1
 |𝑚𝑚, 𝐵𝐵⟩⟨𝑚𝑚, 𝐴𝐴| + |𝑚𝑚, 𝐶𝐶⟩⟨𝑚𝑚, 𝐵𝐵| + |𝑚𝑚, 𝐷𝐷⟩⟨𝑚𝑚, 𝐶𝐶| + |𝑚𝑚, 𝐷𝐷⟩⟨𝑚𝑚, 𝐸𝐸| + |𝑚𝑚, 𝐸𝐸⟩⟨𝑚𝑚, 𝐹𝐹| 

+|𝑚𝑚, 𝐹𝐹⟩⟨𝑚𝑚, 𝐴𝐴| + ℎ. 𝑐𝑐. )  + ∑ 𝑤𝑤 (
𝑁𝑁−1

𝑚𝑚=1
|𝑚𝑚 + 1, 𝐴𝐴⟩ ⟨𝑚𝑚, 𝐷𝐷|  + ℎ. 𝑐𝑐. ) (5) where 

(5) 

where 𝑚𝑚 is the unit cell index. The elements of the Hamiltonian matrix are given by 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ⟨𝑖𝑖,α|𝐻𝐻|𝑗𝑗,β⟩  where 
𝑖𝑖, 𝑗𝑗 = 1,2,3 … 𝑁𝑁 and α,β =  𝐴𝐴,𝐵𝐵 , 𝐶𝐶, 𝐷𝐷, 𝐸𝐸, 𝐹𝐹 . The Hamiltonian for the bulk part of the chain modeled using periodic 
boundary conditions is : 
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𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ 𝑣𝑣(
𝑁𝑁

𝑚𝑚=1
 |𝑚𝑚, 𝐵𝐵⟩⟨𝑚𝑚, 𝐴𝐴|  +  |𝑚𝑚, 𝐶𝐶⟩⟨𝑚𝑚, 𝐵𝐵| +  |𝑚𝑚, 𝐷𝐷⟩⟨𝑚𝑚, 𝐶𝐶| + |𝑚𝑚,𝐷𝐷⟩⟨𝑚𝑚, 𝐸𝐸| +  |𝑚𝑚, 𝐸𝐸⟩⟨𝑚𝑚, 𝐹𝐹|

+  |𝑚𝑚, 𝐹𝐹⟩⟨𝑚𝑚,𝐴𝐴|  + ℎ. 𝑐𝑐. )  + ∑ 𝑤𝑤
𝑁𝑁

𝑚𝑚=1
|(𝑚𝑚 mod 𝑁𝑁) + 1, 𝐴𝐴⟩ ⟨𝑚𝑚, 𝐷𝐷|  + ℎ. 𝑐𝑐. ) 

(6) 

EIGENVALUES, EIGENSTATES AND THE WINDING NUMBER 

Trimer Chain 
Considering the bulk Hamiltonian of the trimer chain in Equation 2, the energy eigenvalues of the system can be 
determined using exact diagonalization. The Schrödinger equation for the bulk Hamiltonian in matrix form is given 
by: 

 

 
(7) 

 

This gives the energy eigenvalues : 

𝐸𝐸0 (𝑘𝑘) = 0 and 𝐸𝐸± (𝑘𝑘) = ±√2(𝑣𝑣2 + 𝑤𝑤 2 + 2𝑣𝑣𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘) ), (8) 

where 𝑘𝑘 is the wave number taking up values in the first Brillouin zone (Asboth et al. 2015). There are three 
eigenvalues in Equation 8. The first eigenvalue (zero energy) has energy coinciding with the Fermi energy, i.e. 
𝐸𝐸0 (𝑘𝑘) = 0 = 𝐸𝐸𝑓𝑓  (Asboth et al. 2015). By varying the magnitude of the hopping parameters 𝑣𝑣 and 𝑤𝑤, a dispersion 
relation shown in Figure 5 can be obtained. 

 

Figure 5. Bulk eigenvalues of the trimer chain plotted in the first  Brillouin zone (𝑘𝑘 = [−π, π]) with Fermi energy 𝐸𝐸𝑓𝑓 = 0: [a] 𝑣𝑣 = 1, 𝑤𝑤 =
 0; [b] 𝑣𝑣 = 1 , 𝑤𝑤 =  0.5; [c] 𝑣𝑣 =  1, 𝑤𝑤 = 1; [d] 𝑣𝑣 = 0.5, 𝑤𝑤 = 1; [e] 𝑣𝑣 =  0, 𝑤𝑤 = 1. 

 

The dispersion relation consists of five different scenarios concerned with the different magnitudes of the hopping 
parameter. Figure 5a describes the system with 𝑣𝑣 = 1 and 𝑤𝑤 = 0. Examining the figure, it can be seen that there exists 
a flat band situated at the Fermi level 𝐸𝐸 = 0. This is due to 𝐸𝐸0 (𝑘𝑘) which has a constant value and is  independent of 
the wave number 𝑘𝑘. This characteristic can be seen in all the configurations indicating that all of the configuration of 
the system is a conductor (Simon 2013). Furthermore, two flat bands can also be observed at regions 𝐸𝐸 = ±√2𝑣𝑣. The 
same observations can be seen in Figure 5e with flat bands situated at 𝐸𝐸 =  ±√2𝑤𝑤 for 𝑣𝑣 = 0 and 𝑤𝑤 = 1. The case for 

(
0 𝑣𝑣 + 𝑤𝑤𝑒𝑒−𝑖𝑖𝑏𝑏 𝑣𝑣 + 𝑤𝑤𝑒𝑒−𝑖𝑖𝑏𝑏

𝑣𝑣 + 𝑤𝑤𝑒𝑒𝑖𝑖𝑏𝑏 0 0
𝑣𝑣 + 𝑤𝑤𝑒𝑒𝑖𝑖𝑏𝑏 0 0

) (
𝐴𝐴(𝑘𝑘)
𝐵𝐵(𝑘𝑘)
𝐶𝐶(𝑘𝑘)

) = E(k) (
𝐴𝐴(𝑘𝑘)
𝐵𝐵(𝑘𝑘)
𝐶𝐶(𝑘𝑘)

).
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𝑣𝑣 > 𝑤𝑤, Figure 5b and 𝑣𝑣 < 𝑤𝑤, Figure 5d, show sinusoidal variations of the energy with respect to the wave number. A 
defined gap between the uppermost and the lowest energy band can be seen. Lastly, for the case where 𝑣𝑣 = 𝑤𝑤, Figure 
5c, the uppermost and the lowest energy band crossed in the region 𝑘𝑘 = ±𝜋𝜋 indicating an intersection, at a point, 
between the two bands.  

To consider the characteristics of the boundaries of the chain, we examine a finite trimer chain. For the extreme cases 
where 𝑣𝑣 =  0 or 𝑤𝑤 =  0, the chain breaks down into trimers. For the trivial case 𝑤𝑤 =  0, it can be observed that all 
of the sites belong to a corresponding trimer. However, for the topological case where 𝑣𝑣 =  0, there are sites that do 
not belong to a corresponding trimer. Since fermions in these sites do not hop, then these edge sites host zero-energy 
states given by 𝐻𝐻|1, 𝐴𝐴⟩ = 𝐻𝐻|𝑁𝑁, 𝐵𝐵⟩ = 𝐻𝐻|𝑁𝑁, 𝐶𝐶⟩ = 0.  

To calculate the eigenvalues of the finite trimer chain, we diagonalize the Hamiltonian given by : 

 𝐻𝐻 =

(

  
 
 
𝐴𝐴 𝐵𝐵 0
𝐵𝐵𝑇𝑇 𝐴𝐴 𝐵𝐵
0 𝐵𝐵𝑇𝑇 𝐴𝐴

⋯    
0 ⋯   
𝐵𝐵 0 ⋯  

⋯   
 ⋯ 0 
 

 
 

⋯
 

   ⋯
𝐵𝐵𝑇𝑇 𝐴𝐴 𝐵𝐵  0
0
⋯

𝐵𝐵𝑇𝑇
0

𝐴𝐴  𝐵𝐵
𝐵𝐵𝑇𝑇 𝐴𝐴)

  
 
 

  (9) 

with: 

𝐴𝐴 = (
0 𝑣𝑣 𝑣𝑣
𝑣𝑣 0 0
𝑣𝑣 0 0

) and 𝐵𝐵 = (
0 0 0
𝑤𝑤 0 0
𝑤𝑤 0 0

), (10) 

where for 𝑁𝑁 = 10 unit cells, the Hamiltonian is a 30 × 30 matrix. By varying the hopping amplitude 𝑣𝑣 of the finite 
trimer chain, the eigenvalue spectra can be obtained (see Figure 6). As observed from Figure 6a, zero-energy states 
span throughout the graph independent of the values of 𝑣𝑣. This corresponds to the zero-energy eigenvalue that we 
calculated earlier for the bulk (see Equation 8). Notice that these states with zero energy are degenerate. In Figure 6a, 
there are 10 states having the same zero energy. Furthermore, in the region where 𝑣𝑣 < 𝑤𝑤, there exist two additional 
zero-energy states that reside at the edges of the chain. These results are consistent with those found by Bercioux et 
al. (2017). This region is defined as the topologically nontrivial phase as opposed to the region where 𝑣𝑣 > 𝑤𝑤, which  
we define as the topologically trivial phase. As we will see later in this section, these regions have different topological 
invariants that distinguish their topological phase. Additionally, a topological phase transition can be observed in the 
region where the hopping potentials are equal. Figures 6b and c show the probability density |Ψ|2 for the 
corresponding unit cells . Figure 6b shows an arbitrary state where 𝐸𝐸 ≠ 0 wherein the probability density extends 
throughout the whole chain. In contrast, Figure 6c shows a state where 𝐸𝐸 =  0. As seen in this plot, the probability 
density is localized on both the left and right edges of the chain. These states are defined as edge states, where the 
wave function is localized on both edges of the chain and exponentially decay s into the bulk. These edge states are 
typical characteristics of a one-dimensional TI (Asboth et al. 2015).  
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Figure 6. Eigenvalues and eigenstates of a finite trimer chain with N = 10: [a] energy of N = 10 unit cell trimer chain with varying v while 
keeping w=1; [b] probability density of an arbitrary nonzero energy state. A single unit cell is enclosed by the dashed line  with 
sublattice A,B,C; [c] probability density of a zero-energy edge state. 

 

Generalized Trimer Chain 
Following the same procedure as in the previous section, we solve for the energy eigenvalues of the generalized trimer 
chain using exact diagonalization. The Schrödinger equation, using the bulk Hamiltonian in matrix representation is 
given by: 

This gives the energy eigenvalues : 

                                𝐸𝐸0(𝑘𝑘) = 0, 

 𝐸𝐸± (𝑘𝑘) = ±√𝑣𝑣1
2 + 𝑤𝑤1

2 + 2𝑣𝑣1𝑤𝑤1 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘) + 𝑣𝑣2
2 + 𝑤𝑤2

2 + 2𝑣𝑣2 𝑤𝑤2 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘). 
(12) 

  

 

Figure 7. Bulk eigenvalues of the generalized trimer chain plotted in the first  Brillouin zone (k=[ -π,π]) with Fermi energy  =0: [a] 
v1=1,v2=w1=w2=0; [b] v1=v2=0, w1=w2=1; [c] v1=0 ,v2=w1=w2=1; [d] v1=w1=0, 2= 2=1; [e] v1=v2=w1= 2=1. 

 

  

 

 

 

(11) (
0 𝑣𝑣1 + 𝑤𝑤1𝑒𝑒−𝑖𝑖𝑖𝑖 𝑣𝑣2 + 𝑤𝑤2𝑒𝑒−𝑖𝑖𝑖𝑖

𝑣𝑣1 + 𝑤𝑤1 𝑒𝑒𝑖𝑖𝑖𝑖 0 0
𝑣𝑣2 + 𝑤𝑤2 𝑒𝑒𝑖𝑖𝑖𝑖 0 0

) (
𝐴𝐴(𝑘𝑘)
𝐵𝐵(𝑘𝑘)
𝐶𝐶(𝑘𝑘)

) = E(k) (
𝐴𝐴(𝑘𝑘)
𝐵𝐵(𝑘𝑘)
𝐶𝐶(𝑘𝑘)

).
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Notice that when we set 𝑣𝑣1 = 𝑣𝑣2 and 𝑤𝑤1 = 𝑤𝑤2 , we will arrive at the same energy eigenvalues  as those for the trimer 
chain in Equation 8. Shown in Figure 7 are the plots of the energy eigenvalues of the generalized trimer chain with 
respect to the wave number 𝑘𝑘. As seen from the plots, different combinations of the hopping potentials lead to the 
same conducting characteristics due to the flat band situated along the Fermi level. This band is due to 𝐸𝐸0(𝑘𝑘) that we 
obtained. Furthermore, as expected, the configurations where 𝑣𝑣1 = 𝑣𝑣2 and 𝑤𝑤1 = 𝑤𝑤2 resembles the dispersion relations 
of the trimer chain shown in Figure 5c. A visible gap between the uppermost and lowest energy band can be seen in 
Figure 7c in the case where one hopping parameter is zero (𝑣𝑣1 = 0), whereas the rest are equal. It can be generalized  
that this band gap will remain open until we reach the limit where 𝑣𝑣1 = 𝑤𝑤1 and/or 𝑣𝑣2 = 𝑤𝑤2 (see Figures 7d and e). 

To determine the characteristics of the finite generalized trimer chain, we consider a lattice composed of 10 unit cells. 
We find that when only one of the hopping potentials is nonzero and the rest are set to zero, the chain breaks down 
into dimers and the isolated sites would host zero-energy states. To calculate the eigenvalues of the generalized trimer 
chain, we diagonalize the Hamiltonian given by: 

 𝐻𝐻 =

(

  
 
 
𝐴𝐴 𝐵𝐵 0
𝐵𝐵𝑇𝑇 𝐴𝐴 𝐵𝐵
0 𝐵𝐵𝑇𝑇 𝐴𝐴

⋯    
0 ⋯   
𝐵𝐵 0 ⋯  

⋯   
 ⋯ 0 
 

 
 

⋯
 

   ⋯
𝐵𝐵𝑇𝑇 𝐴𝐴 𝐵𝐵  0
0
⋯

𝐵𝐵𝑇𝑇
0

𝐴𝐴  𝐵𝐵
𝐵𝐵𝑇𝑇 𝐴𝐴)

  
 
 

 (13) 

with 

𝐴𝐴 = (
0 𝑣𝑣1 𝑣𝑣2
𝑣𝑣1 0 0
𝑣𝑣2 0 0

) and 𝐵𝐵 = (
0 0 0
𝑤𝑤1 0 0
𝑤𝑤2 0 0

), (14) 

where for a 𝑁𝑁 = 10 unit cell generalized trimer chain, the Hamiltonian is a 30 × 30 matrix. Figure 8a shows the 
eigenvalue spectra of the finite 𝑁𝑁 =  10 generalized trimer chain by varying the three parameters 𝑣𝑣2 = 𝑤𝑤1 = 𝑤𝑤2 
simultaneously while maintaining 𝑣𝑣1 = 1. Also, the topological nontrivial phase in the region 𝑣𝑣 < 𝑤𝑤 which we found 
earlier in the trimer chain (see Figure 6a), motivated us to explore the generalized case where (𝑣𝑣1 ≠ 𝑣𝑣2) < (𝑤𝑤1 = 𝑤𝑤2). 
This case is shown in Figure 8b where we vary the value of 𝑣𝑣1 in the range [0,3] while maintaining 𝑣𝑣2 = 0.5 and 
𝑤𝑤1 = 𝑤𝑤2 = 1. As noticed from Figure 8b, the states that form the edges in the trimer chain are now gapped in the 
region, where 𝑣𝑣1 < 𝑣𝑣2 and 𝑣𝑣1 > 𝑣𝑣2. This gap only closes in the trimer chain limit where (𝑣𝑣1 = 𝑣𝑣2) < (𝑤𝑤1 = 𝑤𝑤2).  

Figure 8c shows a representative probability density located at nonzero energy levels. Figure 8d shows the probability 
density of one of the degenerate states in the generalized trimer chain. Lastly, we examined the eigenstates in the 
region where 𝑣𝑣1 < 𝑣𝑣2, of which a representative probability density is  shown in Figure 8e. Although these states are 
nonzero energy-gapped states, they display a unique characteristic, wherein the probability is only localized in one of 
the edges. They are known as chiral edge states (Martinez Alvarez and Coutinho-Filho 2019), which resemble only 
half of the full edge states of the original SSH model. As we will show later in this section, these chiral edge states do 
not share the same winding number as the gapless zero-energy edge states observed in the trimer chain. 

To establish the bulk-boundary correspondence of the trimer and generalized trimer chain, we express their bulk 
momentum-space Hamiltonian in terms of the basis states. Consider the following traceless and hermitian matrices, 
which are four of the matrices known as Gell-Mann matrices representing the basis of the group SU(3) (Haber 2017): 

λ1 = (
0 1 0
1 0 0
0 0 0

) ,λ4 = (
0 0 1
0 0 0
1 0 0

) ,λ2 = (
0 −𝑖𝑖 0
𝑖𝑖 0 0
0 0 0

) ,λ5 = (
0 0 −𝑖𝑖
0 0 0
𝑖𝑖 0 0

). (15) 
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Figure 8. Eigenvalues and eigenstates of a finite generalized trimer chain with N = 10. [a] Energy of N = 10 unit cell generalized trimer 

chain with varying v2=w1=w2 while keeping v1=1. [b] Energy of N = 10 unit cell generalized trimer chain with v2=0.5 and 
w1=w2=1 and with varying v1. [c] Probability density of an arbitrary nonzero energy state. A single unit cell is enclosed by a 
dashed line with sublattice A,B,C. [d] Probability density of a zero-energy degenerate state. [e] Probability density of a chiral 
edge state. 

 

The bulk-momentum space Hamiltonian of the trimer chain can then be expressed as : 

𝐻𝐻(𝑘𝑘) = √2(𝑣𝑣 + 𝑤𝑤 cos(𝑘𝑘))Λ𝑥𝑥 + √2𝑤𝑤 sin(𝑘𝑘)Λ𝑦𝑦 (16) 

in which the new basis Λ𝑥𝑥  and Λ𝑦𝑦  are linear combinations of the Gell-Mann matrices: 

Λ𝑥𝑥 =
1
√2
(λ1 +λ4),  

 Λ𝑦𝑦 = 1
√2
(λ2 +λ5), 

(17) 

where the normalization coefficients ensure that the basis states follow the same trace orthonormality condition as  that 
of the Gell-Mann matrices Tr[Λ𝑖𝑖Λ𝑗𝑗] = 2δ𝑖𝑖𝑗𝑗 (Haber 2017). On the other hand, for the generalized trimer chain, the 
bulk momentum-space Hamiltonian can be expressed as : 

𝐻𝐻(𝑘𝑘) = (𝑣𝑣1 + 𝑤𝑤1 cos(𝑘𝑘))λ1 + (𝑣𝑣2 + 𝑤𝑤2 cos(𝑘𝑘))λ4 + (𝑤𝑤1 sin(𝑘𝑘))λ2 + (𝑤𝑤2 sin(𝑘𝑘))λ5. (18) 

We can see that Eq. (18) reduces to Eq. (16) in the limit 𝑣𝑣1 = 𝑣𝑣2 and 𝑤𝑤1 = 𝑤𝑤2. To reduce the parameters imposed by 
the four-dimensional vector of the bulk momentum-space Hamiltonian of the generalized trimer chain, we set 𝑤𝑤1 =
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𝑤𝑤2 = 𝑤𝑤, i.e. effectively reducing the free parameters from four to three. The bulk momentum-space Hamiltonian of 
the generalized trimer chain now reads: 

𝐻𝐻(𝑘𝑘) = (𝑣𝑣1 + 𝑤𝑤 cos(𝑘𝑘))λ1 + (𝑣𝑣2 + 𝑤𝑤 cos(𝑘𝑘))λ4 + (√2𝑤𝑤 sin(𝑘𝑘) )Λ𝑦𝑦 . (19) 

Note that the Hamiltonian in Equation 19 satisfies chiral symmetry with the corresponding chiral operator: 

Γ = (
1 0 0
0 −1 0
0 0 −1

)  (20) 

where Γ𝐻𝐻(𝑘𝑘)Γ† = −𝐻𝐻(𝑘𝑘)  and Γ2 = 1. 

To calculate the topological invariant winding number, we project the bulk momentum-space Hamiltonians into their 
corresponding basis states. As for the Hamiltonian of the trimer chain in Equation 16, it has a resemblance with that 
of the bulk momentum-space of the original SSH dimer. As such, we expect its trajectory in the Λ𝑥𝑥Λ𝑦𝑦  space to look 
like the trajectory of the SSH Hamiltonian in the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 space. From these trajectories, we can calculate the winding  
number ν by counting the number of times the trajectory orbits around the origin, i.e. around Λ𝑥𝑥 = Λ𝑦𝑦 = 0. We 
determine the following winding number ν for the trimer chain: 

ν =  {
0,

undetermined,
1,

 𝑣𝑣 > 𝑤𝑤
 𝑣𝑣 = 𝑤𝑤
 𝑣𝑣 < 𝑤𝑤

. (21) 

The winding number is a useful tool in predicting the existence of gapless localized edge states (states where the wave 
function of the system is localized on both edges of the chain) (Asboth et. al 2015). As shown in Equation 21, for the 
case where 𝑣𝑣 > 𝑤𝑤, we found that ν =  0, thus indicating a trivial topology of the system characterized by the absence 
of localized edge states. On the other hand, the case where 𝑣𝑣 < 𝑤𝑤 indicates a nontrivial topology where ν = 1, 
indicating the presence of a pair of gapless localized edge states. Furthermore, the case where 𝑣𝑣 = 𝑤𝑤 leads to an 
undetermined 𝜈𝜈 indicating that the trajectory of 𝐻𝐻 is in direct contact with the origin. This case entails a topological 
phase transition, which shows that the only way to change the winding number of the trimer chain from ν =  0 to ν
= 1, or vice versa, is by closing the gap between the highest and lowest band of the trimer chain.  

 
Figure 9. T rajectories of the bulk momentum-space Hamiltonian of the generalized trimer chain and hexagonal chain in the λ and ζ basis. 

[a] Trajectories of the bulk momentum-space Hamiltonian of the generalized trimer chain with varying ν. The red dot 
corresponds to the origin, i.e. λ1=λ4=Λy=0. The blue circle (rightmost) corresponds to the parameters v 1=0.1,v2=0.5, w1=w2=1, 
where the winding number ν= 0, green circle (middle) with parameters v 1=v2=0.5, w1=w2=1, where the winding number ν= 1 
and the black circle (leftmost) with parameters v1=0.8,v2=0.5, w1=w2=1 where the winding number ν=0. [b] Trajectories of the 
bulk momentum-space Hamiltonian of the hexagonal chain with varying ν. The red dot corresponds to the origin, ζ 1=ζ2=ζ3=0. 
The black circle (lowermost) corresponds to the parameters v= 0,w=1, where the winding number ν= 1, green circle (middle)  
with parameters v= 0.5 ,w=1, where the winding number ν= 0 and blue circle (uppermost) with v= w=1 where the windin g 
number ν= 0. 
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Extending our analysis to the generalized case, we plot the trajectory of the bulk momentum-space Hamiltonian of the 
generalized trimer chain, Equation 19 in λ-space, as shown in Figure 9a. Here, we are interested to see if the winding  
number changes or remains the same for different variations in the upper, 𝑣𝑣1, and lower, 𝑣𝑣2, intracell hopping 
parameters. We are particularly interested in this case due to the nontrivial topological nature of the trimer chain in 
the 𝑣𝑣 < 𝑤𝑤 regime, as we have shown earlier in this section. As such, we would like to generalize the conditions for 
the existence of gapless localized edge states in the (𝑣𝑣1 ≠ 𝑣𝑣2) < 𝑤𝑤 regime in terms of their winding numbers. As 
observed in Figure 9a, we determined the following winding numbers : 

 ν =  {
0,
1,
0,
 
𝑣𝑣1 > 𝑣𝑣2
𝑣𝑣1 = 𝑣𝑣2
𝑣𝑣1 < 𝑣𝑣2

 (22) 

 

where 𝑤𝑤 = 1 for all cases. From this result, we can see that only in the trimer chain limit , i.e. 𝑣𝑣1 = 𝑣𝑣2, is the winding  
number ν =  1 where we have shown a localized edge state in Figure 6c. It is also the region where the gap closes at 
𝐸𝐸 =  0 between the pair of positive and negative energy bands in Figure 8b. The other configurations on the other 
hand, in Equation 22, with 𝑣𝑣1 > 𝑣𝑣2, and 𝑣𝑣1 < 𝑣𝑣2, demonstrate a chiral edge state emerging from a nonzero energy 
state, which is quite different from the usual gapless localized edge states where the probability densities are localized 
on both of the edges of the chain (Martinez Alvarez and Coutinho-Filho 2019).  

Hexagonal Chain 
Solving for the bulk energy eigenvalues of the hexagonal chain requires us to solve Schrödinger’s equation given by: 

 

The energy eigenvalues of the hexagonal chain with varying hopping parameters can be calculated by numerically  
diagonalizing the matrix in Equation 23. We do this using the GNU Octave computational tool software. The 
eigenvalues are shown in Figure 10.  

 
Figure 10. Bulk eigenvalues of the hexagonal chain plotted in the first  Brillouin zone (k=[-π,π]) with the Fermi energy Ef=0: [a] v=1 ,w = 

0; [b] v =1 ,w = 0.5; [c] v = w=1; [d] v=0.5,w=1; [e] v = 0, w=1. 
 
 
We see that Figures 10a–c show an insulating system due to the presence of a band gap. Furthermore, in Figure 10d, 
where 𝑣𝑣 < 𝑤𝑤, a conical band structure can be seen at 𝑘𝑘 = 0. This band structure displays gapless and linear conducting 

 

 

 

 

(23) 

(

  
 
0
𝑣𝑣
0
𝑤𝑤𝑒𝑒𝑖𝑖𝑖𝑖
0
𝑣𝑣

𝑣𝑣
0
𝑣𝑣
0
0
0

0
𝑣𝑣
0
𝑣𝑣
0
0

𝑤𝑤𝑒𝑒−𝑖𝑖𝑖𝑖
0
𝑣𝑣
0𝑣𝑣
0

0
0
0
𝑣𝑣
0
𝑣𝑣

𝑣𝑣
0
0
0
𝑣𝑣
0)

  
 

(

 
 
 
𝑎𝑎(𝑘𝑘)
𝑏𝑏(𝑘𝑘)
𝑐𝑐(𝑘𝑘)
𝑑𝑑(𝑘𝑘)
𝑒𝑒(𝑘𝑘)
𝑓𝑓(𝑘𝑘))

 
 
 
= E(k)

(

 
 
 
𝑎𝑎(𝑘𝑘)
𝑏𝑏(𝑘𝑘)
𝑐𝑐(𝑘𝑘)
𝑑𝑑(𝑘𝑘)
𝑒𝑒(𝑘𝑘)
𝑓𝑓(𝑘𝑘))

 
 
 
.
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bands, which are typical for a semi-metal (Wan et al. 2011). Additionally, when 𝑣𝑣 = 0, see Figure 10e, the chain 
shows conducting characteristics  due to the flat band situated along the Fermi energy, 𝐸𝐸𝑓𝑓 = 0, independent of the 
wave number 𝑘𝑘. The eigenvalue spectra can be determined by diagonalizing the Hamiltonian given by : 

𝐻𝐻 =

(

  
 
 
𝐴𝐴 𝐵𝐵 0
𝐵𝐵𝑇𝑇 𝐴𝐴 𝐵𝐵
0 𝐵𝐵𝑇𝑇 𝐴𝐴

⋯    
0 ⋯   
𝐵𝐵 0 ⋯  

⋯   
 ⋯ 0 
 

 
 

⋯
 

   ⋯
𝐵𝐵𝑇𝑇 𝐴𝐴 𝐵𝐵  0
0
⋯

𝐵𝐵𝑇𝑇
0

𝐴𝐴  𝐵𝐵
𝐵𝐵𝑇𝑇 𝐴𝐴)

  
 
 

 (24) 

with: 

𝐴𝐴 =

(

  
 
0 𝑣𝑣 0 0 0 𝑣𝑣
𝑣𝑣 0 𝑣𝑣 0 0 0
0 𝑣𝑣 0 𝑣𝑣 0 0
0 0 𝑣𝑣 0 𝑣𝑣 0
0 0 0 𝑣𝑣 0 𝑣𝑣
𝑣𝑣 0 0 0 𝑣𝑣 0)

  
 
 and 𝐵𝐵 =

(

  
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
𝑤𝑤 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0)

  
 
, (25) 

where for a 𝑁𝑁 = 10 unit cell hexagonal chain, the Hamiltonian is a 60 × 60 matrix.  

 

 
Figure 11. Eigenvalues and eigenstates of a finite hexagonal chain with N = 10: [a] energy of N = 10 unit cells hexagonal chain with w =  

1 and varying v; [b] probability density of an arbitrary nonzero energy state; [c] probability density of a zero -energy edge state. 
 
 
Shown in Figure 11a are the eigenvalue spectra obtained by plotting the energy eigenvalues with 𝑤𝑤 = 1 and slowly 
tuning 𝑣𝑣 in the range [0,3]. Furthermore, Figures 11b and c show a representative extended state and an edge state of 
the finite hexagonal chain. A pair of zero energy edge states (one shown in Figure 11c) show up when 𝑣𝑣 is varied. 
Additionally, we observe a topological phase transition around 𝑣𝑣 = 0. The representative states as seen in Figure 11b 
shows an arbitrary nonzero energy state. In this figure, it can be seen that the probability density is extended across 
the chain indicating the conducting characteristics of a trivial topology. In contrast, the edge state shown in Figure 11c 
indicates that the probability density is localized at the edges of the chain revealing the nontrivial topology of the 
system. 
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To establish the bulk-boundary correspondence of the hexagonal chain, we express the bulk momentum-space 
Hamiltonian in terms of its basis states: 

𝐻𝐻(𝑘𝑘) = (𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘))ζ1 + (𝑤𝑤 𝑐𝑐𝑠𝑠𝑠𝑠(𝑘𝑘))ζ2 + (√6𝑣𝑣)ζ3,         (26) 

where ζ1, ζ2, and ζ3 are: 

ζ1 =

(

  
 
0
0
0
1
0
0

0
0
0
0
0
0

0
0
0
0
0
0

1
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0)

  
 
, ζ2 =

(

  
 
0
0
0
𝑠𝑠
0
0

0
0
0
0
0
0

0
0
0
0
0
0

−𝑠𝑠
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0)

  
 
,ζ3 =

1
√6
(

  
 
0
1
0
0
0
1

1
0
1
0
0
0

0
1
0
1
0
0

0
0
1
0
1
0

0
0
0
1
0
1

1
0
0
0
1
0)

  
 
. (27) 

These matrices satisfy the orthonormality condition Tr[ζ𝑖𝑖ζ𝑗𝑗 ] = 2δ𝑖𝑖𝑗𝑗 . They are three of the 35 matrices  
representing the basis of the group SU(6). Furthermore, we define the chiral symmetric operator: 

Γ =

(

  
 
1
0
0
0
0
0

0
−1
0
0
0
0

0
0
1
0
0
0

0
0
0
−1
0
0

0
0
0
0
1
0

0
0
0
0
0
−1)

  
 

 (28) 

 

where Γ𝐻𝐻(𝑘𝑘)Γ† = −𝐻𝐻(𝑘𝑘)  and Γ2 = 1. This 6 × 6 chiral operator ensures that the energies of the system form 
chiral symmetric pairs. 

The trajectories of the bulk momentum-space Hamiltonian of the hexagonal chain in ζ-space, Equation 26 with varying 
hopping parameters are shown in Figure 9b. The trajectory of Equation 26 forms a cylindrical plot with radius 𝑤𝑤 and 
height 𝑣𝑣. Thus, increasing the value of 𝑤𝑤 and 𝑣𝑣 will increase the radius and height, respectively. The same as the 
procedure introduced in the previous section, we determine the winding number to be : 

ν =  {
1,
0
0,
,  
𝑣𝑣 = 0
𝑣𝑣 = 0.5 
𝑣𝑣 = 1

, (29) 

where we keep the value of 𝑤𝑤 = 1. As seen from the calculation of the winding number, we expect a pair of localized  
edge states in the region 𝑣𝑣 = 0, where the winding number ν =  1. An example of this edge state is shown in Figure  
11c. 
 

CONCLUSION 
In summary, we extended the SSH model into three distinct types  – the trimer chain, the generalized trimer chain, and 
the hexagonal chain. The trimer chain is a one-dimensional lattice with sites 𝐴𝐴,𝐵𝐵, and 𝐶𝐶  and staggered hopping 
potentials 𝑣𝑣 and 𝑤𝑤 for the intracell and intercell hopping energies. The generalized trimer chain is a generalization of 
the trimer chain with the hopping parameters 𝑣𝑣1, 𝑣𝑣2, 𝑤𝑤1, and 𝑤𝑤2 to distinguish the 𝐴𝐴 to 𝐵𝐵 and 𝐴𝐴 to 𝐶𝐶  hopping. Lastly, 
the hexagonal chain is composed of six sublattices with staggered hopping potentials  𝑣𝑣 and 𝑤𝑤 for the intracell and 
intercell hopping. 

Exact diagonalization was used to calculate the energy eigenvalues of the bulk and the finite systems of the extended 
models. For the trimer chain, we find that the bulk characteristic of the chain exhibits conducting characteristics due 
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to the flat band situated along the fermi energy independent of the values of 𝑣𝑣 and 𝑤𝑤. Furthermore, when the hopping 
potentials are equal, it is seen that the uppermost and lowermost bands meet at 𝑘𝑘 = ±π. The trimer chain’s finite 
structure shows the presence of gapless zero-energy edge states as well as a topological phase transition, properties 
that resemble the characteristics of a one-dimensional TI. The bulk-boundary correspondence for the trimer chain also 
predicts the existence of these localized edge states  through the winding number ν where we determine ν =  1 in 
the topological (𝑣𝑣 < 𝑤𝑤) regime. The bulk characteristic of the generalized trimer chain, on the other hand, also shows 
conducting characteristics due to the flat band situated along the Fermi level. In the generalized case, where 𝑣𝑣1 ≠ 𝑤𝑤1 
and/or 𝑣𝑣2 ≠ 𝑤𝑤2, a visible band gap can be seen between the uppermost and the lowest band s. This band gap only 
closes at the limit when 𝑣𝑣1 = 𝑤𝑤1 and 𝑣𝑣2 = 𝑤𝑤2. The bulk-boundary correspondence of the generalized trimer chain 
reveals that the gapless topological edge states (localized on both edges) are only present in the trimer chain limit  
when 𝑣𝑣1 = 𝑣𝑣2. Gapped chiral edge states on the other hand, i.e. localized only on the left or right boundary, show up 
in the region where (𝑣𝑣1 ≠ 𝑣𝑣2) < (𝑤𝑤1 = 𝑤𝑤2 ). Lastly, for the hexagonal chain, the dispersion relations show that the 
model is semi-metal when 𝑣𝑣 < 𝑤𝑤 due to the absence of band gap and a metal when 𝑣𝑣 = 0 due to the presence of 
degenerate flat bands at the Fermi level. The existence of gapless localized edge states is also observed in the finite 
hexagonal chain at around 𝑣𝑣 = 0, where the system is in the topological phase defined by a winding number ν =  1. 
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