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Declared protected areas have ecologically important landscapes that must be conserved and 
protected. Status of protected areas could be monitored through land use and land cover (LULC) 
assessments. LULC offers baseline data for integrated land use planning and improvement of existing 
policies are therefore necessary to be conducted. This study was conducted to monitor the existing 
LULC of six islands within the Batanes Protected Landscapes and Seascapes (BPLS) through 
a machine learning (ML)-based random forest (RF) classifier using multi-sourced data such as 
Landsat imageries’ surface reflectance (SR), Landsat-derived land surface temperature (LST), and 
global ecosystem dynamic investigation (GEDI)-derived height (Ht) metrics and to determine the 
effects of the LST and Ht metrics to LULC classification. Four layer stacked images with different 
features were analyzed – including SR, SR-LST, SR-Ht, and SR-LST-Ht. The result of the LULC 
classification showed an accuracy based on Macro F1-score and Kappa (K) of 0.81 and 0.83, 0.83 
and 0.86, 0.86 and 0.89, and 0.93 and 0.94, for SR, SR-LST, SR-Ht, and SR-LST-Ht, respectively. 
When compared to the existing global-scale LULC, this study has higher accuracy than the GLAD 
and ESRI products, which have Macro F1-scores and K-values of 0.73 and 0.71, and 0.59 and 0.64, 
respectively. To conclude, the inclusion of LST and Ht information in addition to SR data in LULC 
classification can improve the accuracy by up to 12% and 11% based on Macro F1-score and K, 
respectively. The result of this study can serve as a reference for achieving improved and reliable 
LULC information that is necessary for monitoring fluctuations of the global earth’s resources and 
comprehensive LULC planning. In addition, the technique used in this study can serve as a reference 
in generating reliable LULC information that can aid in the sustainable implementation of policies, 
rules, and regulations intended for declared protected areas like BPLS.
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INTRODUCTION
Land use and land cover (LULC) monitoring is crucial 
in forest ecosystem conservation and protection 
because it can identify potential areas that are at risk 
of land use conversion and deforestation (Tarazona and 

Miyasiro-López 2020), therefore enabling effective 
forest management and conservation planning. 
LULC monitoring provides information needed for 
biodiversity assessment (Disperati and Virdis 2015), 
fire management (Vilar et al. 2021), and environmental 
impact assessments. Further, LULC information is also 
one of the key references for policymaking, planning, 
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and implementation of management strategies that are 
appropriate for combating the growing impacts of climate 
change and other environmental concerns (FAO 2016). 
With the crucial role of LULC monitoring, understanding 
LULC dynamics is essential, and it needs to be of as high 
accuracy as possible. Updated, precise, and accurate 
LULC monitoring is needed and can be achieved through 
multi-temporal LULC mapping. By analyzing changes in 
LULC over time, multi-temporal LULC mapping enables 
accurate detection of land cover changes – including 
deforestation, urban expansion, agricultural expansion, 
and natural disturbances (Wiederkehr et al. 2020; Clarin 
et al. 2021; Doyog et al. 2021; Baig et al. 2022). These 
data contribute to a better understanding of the dynamics 
of the Earth’s surface and support decision-making for 
sustainable land management, conservation, and resource 
planning. In addition, multi-temporal LULC mapping 
enables capturing seasonal variability because different 
land cover types exhibit seasonal variability due to 
factors such as vegetation growth, phenology, and natural 
cycles. And lastly, long-term trends of LULC changes 
are also identified when multi-temporal LULC mapping 
is conducted. By analyzing historical LULC data, it 
becomes possible to understand the patterns, rates, and 
drivers of land cover change over an extended period. 
This information helps in predicting future trends (Baig et 
al. 2022) and assessing the effectiveness of conservation 
and management interventions. 

To conserve biodiversity, protect and maintain the 
ecological integrity of landscapes and seascapes, and 
prevent the continuous conversion of LULC, the Philippines 
established a declaration of protected areas. As per the 
enactment of the expanded National Integrated Protected 
Areas System or e-NIPAS Act in 2018, the Protected Area 
Management Board oversees 94 protected areas in the 
Philippines. In addition, other protected areas were declared 
through other legislations like the Batanes Protected 
Landscapes and Seascapes (BPLS). Part of monitoring the 
effectiveness of the declaration of the protected areas can 
be provided by conducting LULC monitoring. 

LULC mapping can be performed using various 
techniques – from traditional to advance. Before the 
evolvement of advanced techniques, LULC mapping was 
first conducted traditionally through visual interpretation 
of images; however, it is subjective, time-consuming, 
and suitable for small-scale mapping. On the other 
hand, advanced techniques involve the use of machine 
learning (ML) and remote sensing (RS) data (Li et al. 
2012; Basheer et al. 2022). ML algorithms such as 
artificial neural networks (ANNs), convolutional neural 
networks, decision trees, random forest (RF), support 
vector machine (SVM), k nearest neighbor (kNN), and 
maximum likelihood classifiers (MLC) are increasingly 

being used for LULC mapping. These algorithms learn 
from training data to automatically classify land cover 
based on spectral, textural, and contextual features and 
can handle large datasets enabling accurate and efficient 
land cover classification and can improve accuracy when 
trained with appropriate training samples. 

For RS-based LULC mapping, several types can be utilized, 
depending on the available resources, resolution, and the 
desired level of accuracy. Satellite imagery is a primary 
source of data for LULC mapping – which are either high-
resolution (1-5m) like WorldView, GeoEye, or Pleiades 
(Zhang and Kerekes 2011; Sertel et al. 2022), medium-
resolution satellite data (10–30 m) like Landsat or Sentinel-2 
(Estoque and Maruyama 2011; Merida and Perez 2017; 
Doyog et al. 2021), or low-resolution satellite data (> 30 m) 
like NASA (National Aeronautics and Space Administration) 
Terra or Aqua MODIS (Song et al. 2011; Gebrejewergs et al. 
2018). Other RS data include aerial photographs and those 
that are acquired by active remote sensors like light detection 
and ranging (LiDAR) and synthetic aperture radar. 

Despite the advantages and high performance that 
advanced techniques offer, LULC classification can lead to 
many setbacks. The presence of clouds in satellite imagery, 
which alters the correct surface reflectance (SR) of the 
earth’s surface is unavoidable, so using SR information 
alone is not enough to achieve highly accurate results. The 
high degree of similarity in spectral information can also 
lead to poor classifications of individual classes. However, 
the use of other metrics such as vegetation indices, 
biological information like canopy height and leaf area 
index, and topographic features like elevation, slope, and 
aspect can help solve this problem. The use of vegetation 
indices like the normalized difference vegetation index 
(NDVI) in combination with the Savitzky-Golay filter 
(Mi et al. 2019), enhanced vegetation index, normalized 
difference water index (NDWI), soil-adjusted vegetation 
index, and NDVI (da Silva et al. 2020) in the field of 
LULC classification has been practiced and provided 
satisfactory results. From being merely used as an input 
feature, it has also been noted to increase the accuracy 
of LULC classification, as shown in the works of 
Sinha et al. (2015), wherein they used the thermal 
integrated vegetation and advanced thermal integrated 
vegetation indices as an added feature in combination 
with the spectral features of the Landsat 7 image. The Ht 
information also helped in the LULC classification that 
was conducted by Gxumisa and Breytenbach (2017) and 
the works of Xie et al. (2019) showed that even slope 
information had a great contribution to the improvement 
of the quality of the LULC classification.

In addition, several methods can be used to address the 
issue of cloud cover in satellite imagery such as cloud 
masking and replacement. Clouds can significantly impact 
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LULC classification, so they should be removed from the 
input data as much as possible before LULC classification 
is performed. 

This study was conducted to assess the LULC of the six 
islands within the BPLS using SR of Landsat images, LST, 
and Ht information as input data and ML-based RF as the 
classifier. In addition, this study is aimed to determine 
and compare the effects of integrating Ht, LST, and SR 
on LULC classification. Hence, a total of four stacked 
images are being compared in this study – namely, SR, 
SR-Ht, SR-LST, and SR-Ht-LST. Six classes are being 
classified – namely, agriculture (Ag); bare land (Bl), which 
includes those non-vegetated areas, sand, and rocks; built-
up (Bu), which consists of buildings and road networks; 
forest (F); grassland (Gl); and water (W), which includes 
the inland water and ocean.

MATERIALS AND METHODS

Study Site
The Batanes group of islands and islets is located in the 
northernmost part of the Philippines. The northernmost island 
called Y'ami is 141 km away from the southern tip of the 
main island of Taiwan and 98 km away from the nearest 
Taiwan island named Lesser Orchid Island. Basco, which is 
the capital town, is approximately 280 km away from Aparri, 
Cagayan, 860 km away from Manila and 190 km away from 
the southernmost part of the main island of Taiwan.

Along with its surrounding waters, the islands and islets 
were included as one of the 10 Integrated Protected Area 
System sites of the Philippines in 1994 and were declared 
a protected landscape and seascape through Presidential 
Proclamation No. 335, s. 1994 and Republic Act No. 
8991, also known as the Batanes Protected Area Act of 
2000 – which aimed to protect, preserve, and conserve 
the islands’ diverse terrestrial and marine ecosystem. 
The BPLS consists of 10 islands – namely, Y'ami, North 
Island, Mavudis, Siayan, Itbayat, Dinem, Batan, Sabtang, 
Vohas, and Dequey. Only the three main islands are 
inhabited (Batan, Itbayat, and Sabtang). According to 
the 2020 population data (PSA 2020), Batan has the 
highest population, accounting for 74.38% of the total 
population. Itbayat comes next with 16.61%, and Sabtang 
has the smallest population making up 9.01%. In terms of 
population density, Batan has the highest density at 176/
km2, followed by Sabtang at 38/km2, and Itbayat at 42/
km2, respectively. The climate of the region is classified 
as tropical rainforest according to the Köppen climate 
classification. It is characterized by unpredictable rainfall 
distributed throughout the year. The average yearly 
temperature is 26.61 ºC. The coldest month is January, 
with temperatures ranging from 20–26 ºC and an average 
of 22.52 ºC. On the other hand, the hottest month is June, 
with temperatures ranging from 26–32 ºC and an average 
of 29.39 ºC. Due to its geographical location, the area is 
highly susceptible to disturbances such as typhoons, strong 
winds, and sea-level rise (Yumul et al. 2011). This study 
primarily focuses on the three inhabited islands – as well 
as Dinem, Vohas, and Dequey islands (Figure 1).

Figure 1. Location of the BPLS in the Philippines (a), the six islands of BPLS that were subjected to LULC classification (b), and the multi-
temporal Landsat images of the islands showing various distributions of cloud cover (c–e). The images (c–e) were displayed 
using bands 6, 5, and 4 for RGB, respectively.
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Data Acquisition
SR data. Table 1 summarizes the features that were used 
in this study with their corresponding source data. The 
Bands 1–7, modified normalized difference water index 
(MNDWI), and LST were derived from Landsat 8 and 
9 images, and the Ht information was derived from the 
GEDI-based global canopy height (Potapov et al. 2021). 

With the reason that no single satellite image with a 
cloud-free cover is available in the archived data, four 
multi-temporal Landsat images (Landsat 8 and 9) were 
used in this study. Level 2 products of Landsat 8 images 
acquired in February 2019, January 2020, and March 2021 
and Landsat 9 images acquired in 2022 (March) were 
downloaded freely at the USGS website (https//:www.
usgs.earthexplorer.com). Both Landsat 8 and 9 carry 2 
instruments – namely, the operational land imager (OLI) 
and the thermal infrared sensor (TIRS). OLI has eight 
multi-spectral bands – namely, Bands 1–7 and 9 with 30-m 
spatial resolution – and one panchromatic band (Band 8) 
with 15-m spatial resolution. The TIRS has two thermal 
bands – namely, 10 and 11 with 100-m spatial resolution. 
Landsat 8 was launched on 11 Feb 2013, and Landsat 9 
was launched on 27 Sep 2021. 

Before image classification, the pansharpening and cloud 
masking techniques were performed on the images. The 
NNDiffuse model was used for the pansharpening. The 
purpose of pansharpening is to create a high-resolution 
colored image by merging a single band high-resolution 
black and white image (panchromatic) and a medium 
or low-resolution multi-spectral image. After the 
pansharpening process, manual cloud masking was 
performed to remove cloud cover and cloud shadow 
in each of the four Landsat images. Table 2, Column 1 
shows the final satellite images that were used for LULC 
mapping of each island after the cloud masking; Columns 
2–5 pertain to the other details of the satellite images. 

In this study, the MNDWI was incorporated as an 
additional feature. The MNDWI was calculated using 
the green and SWIR bands (the formula is provided in 
Table 1), following pansharpening and cloud masking, 
to assist in the identification of water areas. Merida and 
Perez (2017) have previously highlighted the challenge 
of classifying shorelines accurately, as they are often 
misclassified as built-up areas. While additional spectral 
indices could potentially enhance reliable LULC mapping, 
they were not utilized in this study, as spectral indices are 
typically derived from the optical data's spectral bands. 
Instead, the focus of this study was on examining the 
impact of LST and Ht information on LULC classification. 
The Bands 1–7, along with the MNDWI, were stacked 
together and collectively referred to as SR features. 

Landsat-based LST data. The TIRS of Landsat 8 and 
9 have two thermal bands (Bands 10 and 11) that are 
purposely for measuring the emitted radiation based on 
emissivity and are further used for the calculation of 
LST. For this study, the single-channel method using 
Band 10 was used for the retrieval of LST because it has 
higher accuracy than Band 11, and Band 11 has some 
uncertainties, as reported by the Landsat 8 team in their 
Landsat 8 Data Users Handbook version 5 (Zanter 2019). 
A series of steps were performed to retrieve the LST in 
each image. The top of atmospheric spectral radiance 
was calculated first using Equation 1, followed by the 
conversion of TOA to brightness temperature using 
Equation 2, calculation of the proportion of vegetation 
(Pv) using Equation 3, and emissivity (ε) using Equation 
4, and lastly, the computation of the LST using Equation 
5. In Equation 1, TOA is the top of the atmosphere, ML is 
the band-specific multiplicative rescaling factor from the 
metadata, Qcal is the quantized calibrated pixel value in 
DN, and AL is the band-specific additive rescaling factor 
from the metadata. In Equation 2, BT is the brightness 
temperature, K1 is the band-specific thermal conversion 

Table 1. List of data for the LULC classification within the BPLS.

Feature Source data Remarks

SR (Bands 1–7 and MNDWI) Landsat 8 and 9 images 

(2019, 2020, 2021, 2022)

 ¾ Multi-temporal; 15-m spatial resolution after the 
pansharpening using panchromatic data (band 8).

 ¾ MNDWI = (Green – SWIR) / (Green + SWIR) 
MNDWI = (B3 – B6)/ (B3 + B6)

LST Landsat 8 and 9 images 

(2019, 2020, 2021, 2022)

 ¾ Multi-temporal; 15-m spatial resolution
 ¾ 2 thermal bands (10 and 11) but only band 10 was used 

because band 11 has some uncertainties (Zanter 2019).
 ¾ NDVI = (NIR – Red) / (Red + NIR)

NDVI = (B5 – B4)/(B4 + B5)

GEDI-derived Ht information (2019) Potapov et al. (2021)  ¾ 30-m spatial resolution but was resampled to 15 m to be 
consistent with the SR and LST

 ¾ LULC classes have different height information 

Philippine Journal of Science 
Vol. 152 No. 5, October 2023

Doyog et al.: Assessment of the LULC of Batanes



1757

constant (in W/m² * ster * μm), K2 is the band-specific 
thermal conversion constant (in Kelvin), L is the spectral 
radiance, and 273.15 is the conversion factor from Kelvin 
to degree Celsius. In Equation 3, Pv is the proportion 
of vegetation and NDVI is the normalized differential 
vegetation index. In Equation 4, ε is the land surface 
emissivity, whereas 0.004 and 0.986 are the constant 
and correction value. Lastly, in Equation 5, w is the 
wavelength of emitted radiance (thermal band), with p 
= 14380.

(1)

(2)

(3)

(4)

(5)

GEDI-based Ht data. The Ht information used in 
this study was retrieved from the 2019 global canopy 
height product that was generated using the integration 
of GEDI and Landsat data (Potapov et al. 2021). The 
GEDI data was collected in April–October 2019, and 
the Landsat analysis-ready data were processed using 
Landsat Collection 1 data from 1997–2019. The GEDI, 
which is a joint mission of NASA and the University 

Table 2. Relevant information on the satellite image of the study sites within the BPLS. 

Island/s Product ID Acquisition date/  
scene center time LCC Sun azimuth/ elevation

Itb
ay

at
 a

nd
 

D
in

em

LC09_L2SP_116046_20220
309_20220311_02_T1

2022-03-09/02:15:51.8678399Z 8.32 130.70048064/54.03925963

B
at

an

LC08_L2SP_116046_20200
123_20200823_02_T1

2020-01-23/02:15:58.3900269Z 27.97 145.03061488/42.34348824

LC09_L2SP_116046_20220
309_20220311_02_T1

2022-03-09/02:15:51.8678399Z 8.32 130.70048064/54.03925963

LC08_L2SP_116046_20210
330_20210409_02_T1

2021-03-30/02:15:37.0830079Z 33.54 120.63542419/60.58038512

Sa
bt

an
g,

 V
oh

as
, 

&
 D

eq
ue

y

LC08_L2SP_116046_20190
221_20200829_02_T1

2019-02-21

/02:15:33.2529140Z

20.16 136.52609561/48.99528843

Note: LCC is land cloud cover
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of Maryland, is the first space-borne LiDAR that was 
launched in 2018 purposely for canopy height retrieval; 
however, it has a ground footprint of 25 m in diameter, 
and every footprint has a distance of 60 m across track 
and 600 m along track. Therefore, using the GEDI-derived 
Ht information, canopy height estimations with the aid of 
regression models and ancillary data should be performed 
to generate wall-to-wall canopy height information. The 
2019 global canopy product has a spatial resolution of 30 
m and is freely available for use and can be downloaded 
at https://glad.umd.edu/dataset/gedi. For this study, to be 
consistent with the spatial resolution of the SR, the Ht 
product was resampled from 30 to 15 m using the nearest 
technique. The canopy height product, however, did not 
cover the entire Batanes Landscape, especially the part 
of Mt. Iraya on Batan Island (Figure 2). Only the 2019 
Ht information was used in this study. Nevertheless, 
considering a business-as-usual scenario, the canopy 
height rarely changes significantly from 2019–2022; 
therefore, using Ht information derived only in 2019 is 
reasonable for this study. Further, at present, the wall-
to-wall canopy height information of BPLS is not yet 
available for 2021 and 2022. 

Reference data. The training and validation data used 
in this study were collected by visually inspecting high-
resolution images from the Google Earth Pro desktop 
application. Random selection was employed to gather 
the data. Seed points were generated using a random 
distribution across the entire study site, and each seed 
point was extended by 1 pixel on all sides, resulting in 
a total of 9 pixels per seed point. This random selection 
approach ensured a higher frequency of LULC classes 
with greater representation across the area. The validation 
dataset consisted of the following proportions: 7.09% 
agriculture, 21.41% bareland, 4.29% built-up, 30.69% 
forest, 13.71% grassland, and 22.81% water. 

LULC Classification 
The LULC classification was performed using the RF 
classifier, which is a non-parametric ML algorithm that 
is based on decision trees (Breiman 2001). The random 
sample selection or the bagging process of RF paves the 
way for achieving uncorrelated decision trees. The success 
of RF highly depends on using uncorrelated decision trees. 
One of the unique features of the RF classifier is ranking 
the variable importance using mean decrease accuracy 
(MDA) and the mean decrease Gini (MDG) as criteria. The 
MDA expresses how much accuracy the model losses by 
excluding each variable. The MDG is a measure of how 
each variable contributes to the homogeneity of the nodes 
and leaves in the resulting RF. The higher the MDA or the 
MDG score, the higher the importance of the variable in 
the model. Variables of low importance or those that do 
not contribute much to the outcome of the classification 
are supposedly not being used. 

The applicability and good performance of the RF in 
LULC classification were already proven by previous 
studies (Gislason et al. 2006; Ghimire et al. 2010; Guo et 
al. 2011; Havens et al. 2013; Puissant et al. 2014; Nitze 
et al. 2015; Xia et al. 2015). Using the RF classifier, the 
LULC classification was performed on all five cloud-
free images of the study site. The image mosaicking 
technique using the mean was performed after the image 
classification.

Accuracy Assessment 
The generated LULC maps using the different features 
were compared based on the performance that was 
evaluated using precision (Equation 6), recall (Equation 
7), F1-score (Equation 8), Macro F1-score, kappa 
coefficient (K) (Equation 9), and overall accuracy as 
criteria. In Equations 6 and 7, true positives are the 
observations that were correctly predicted by the model, 

Figure 2. The GEDI-based height information of the study sites.
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false positives are those predicted data that were included 
in a class but do not belong to the class, and false negatives 
are those that were omitted to a particular class and 
misclassified as a different class. Precision is a measuring 
criterion that assesses the quality of the model, whereas 
recall measures the number of relevant results that the 
model returns – either relevant or irrelevant. F1-score 
is calculated from the individual precision and recall of 
the classes and the Macro F1-score is the average of all 
the per-class F1-scores. The K measures the agreement 
between classification and truth values and ranges from 
0 (worst) to 1 (best). 

Lastly, the results of the LULC classification in this 
study were compared with the existing global-scale 
LULC products such as the 2019 Global Land Analysis 
and Discover (GLAD) product (Hansen et al. 2022) and 
the 2020 Environmental Systems Research Institute 
(ESRI) product (Karra et al. 2021). The ESRI product 
was generated using the artificial intelligence technique, 

particularly the deep learning model, and has a spatial 
resolution of 10 m. The ESRI product was produced using 
the visible bands (blue, green, red), near-infrared, and the 
two shortwave infrared features of Sentinel-2 and has an 
overall global accuracy of 86%. On the other hand, the 
GLAD LULC product is a 30-m resolution map produced 
using Landsat satellite imagery and topographical data and 
various algorithms such as entropy-based classification 
trees and the sum of squares-based regression trees. The 
GLAD LULC product has an overall global accuracy of 
78.35%. The ESRI product covers the whole BPLS, but 
the GLAD LULC does not specifically on the part of Mt. 
Iraya because it used the GEDI-height product as ancillary 
data. The accuracy and extent of the area covered by the 
individual classes were compared. The area coverage 
of the LULC maps in this study and the ESRI product 
was adjusted to be consistent with the GLAD product. 
The overall flowchart of the processes is summarized in 
Figure 3.

Figure 3. The process used in the comparison of the effects of the features on the LULC classification.
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(6)

(7)

(8)

(9)

RESULTS 
Figure 4 shows the LULC classification map of the study 
sites using different input data. From the LULC maps, the 
study sites are majority covered with water – followed 
by forest, grassland, bareland, agriculture, and built-up, 
respectively. On average, the study sites covered 66.24% 
of water, 21.05% of forest, 7.93% of grassland, 2.31% of 
bareland, 1.79% of agriculture, and 0.67% built-up. The 
low area coverage of built-up indicates that the islands of 
Batanes are not yet heavily urbanized (as of 2022), and 

the large area is covered with forest, indicating a healthy 
and diverse environment that needs to be conserved and 
protected. 

Using the validation dataset, the performance of the RF-
based LULC classification was assessed. Tables 3, 4, 5, 
and 6 show the result of the accuracy assessment of the 
LULC maps (Figure 4) that were generated using SR, 
SR-Ht, SR-LST, and SR-Ht-LST, respectively. 

In Table 3, when the SR information was used in LULC 
classification, the class-based F1-scores ranged from 
0.65–0.98, which were observed in agriculture and water, 
respectively. The other classes including bareland, built-
up, forest, and grassland had an F1-score of 0.89, 0.67, 
0.90, and 0.77, respectively, resulting in a Macro F1-score 
of 0.81 with a K of 0.83. When the Ht information was 
added to SR for LULC classification, the F1-score of 
bareland, built-up, forest, grassland, agriculture, and water 
was improved to 0.90, 0.71, 0.92, 0.78, 0.69, and 0.99, 
respectively, resulting to an improved Macro F1-score 
of 0.83 and a K of 0.86 (Table 4). The F1-score of the 
classes was further improved when the LST information 
was added to the SR and Ht information, as shown in 
Table 5. The F1-scores of bareland, built-up, forest, 
grassland, agriculture, and water increased to 0.91, 0.74, 

Figure 4. RF-based LULC classification using multi-sourced input data.
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Table 3. Accuracy assessment of the LULC product generated using SR information.

SR
Observed classes

Bl Bu F Gl Ag W Total

C
la

ss
ifi

ed
 c

la
ss

es

Bl 1197 54 24 13 6 8 1302

Bu 15 180 27 25 6 6 259

F 33 22 1790 86 71 0 2002

Gl 86 9 61 690 59 0 905

Ag 24 13 93 77 319 2 528

W 37 1 0 0 0 1467 1505

Total 1392 279 1995 891 461 1483 6501

Precision 0.92 0.69 0.89 0.76 0.60 0.97

Recall 0.86 0.65 0.90 0.77 0.69 0.99

F1-score 0.89 0.67 0.90 0.77 0.65 0.98

Macro F1-score = 0.81; K = 0.83; overall accuracy = 0.87

Table 4. Accuracy assessment of the LULC product generated using SR and Ht information.

SR-Ht
Observed classes

Bl Bu F Gl Ag W Total

C
la

ss
ifi

ed
 c

la
ss

es

Bl 1206 27 5 25 5 7 1275

Bu 34 185 0 23 3 0 245

F 41 12 1865 59 61 0 2038

Gl 69 33 47 710 54 7 920

Ag 15 22 78 72 338 0 525

W 27 0 0 2 0 1469 1498

Total 1392 279 1995 891 461 1483 6501

Precision 0.95 0.76 0.92 0.77 0.64 0.98

Recall 0.87 0.66 0.93 0.80 0.73 0.99

F1-score 0.90 0.71 0.92 0.78 0.69 0.99

Macro F1-score = 0.83; K = 0.86; overall accuracy = 0.89

Table 5. Accuracy assessment of the LULC product generated using SR and LST information.

SR- LST
Observed classes

Bl Bu F Gl Ag W Total

C
la

ss
ifi

ed
 c

la
ss

es

Bl 1213 17 8 20 7 0 1265

Bu 41 200 0 4 14 6 265

F 17 15 1920 38 11 0 2001

Gl 55 23 38 758 69 0 943

Ag 39 13 29 71 360 0 512

W 27 11 0 0 0 1477 1515

Total 1392 279 1995 891 461 1483 6501

Precision 0.96 0.75 0.96 0.80 0.70 0.97

Recall 0.87 0.72 0.96 0.85 0.78 1.00

F1-score 0.91 0.74 0.96 0.83 0.74 0.99

Macro F1-score = 0.86; K =0.89; overall accuracy = 0.91
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0.96, 0.83, 0.74, and 0.99, respectively. The Macro F1-
score increased to 0.86 and K increased to 0.89. When 
the Ht and LST information were both added to SR for 
LULC classification, the highest F1-score of each class 
was observed (Table 6). The F1-score of bareland, built-
up, forest, grassland, agriculture, and water increased to 
0.97, 0.90, 0.96, 0.89, 0.83, and 1.0, respectively, and the 
Macro F1-score increased to 0.93 and K increased to 0.94. 

The F1-score of the classes had an average increase of 
0.04 when the Ht information was added to SR for LULC 
classification and an average of 0.08 when LST was 
added to SR. An average increase of 0.12 was observed 
when both the Ht and LST information were added. 
This indicates that LST has a higher impact than the 
Ht information on LULC classification. Nevertheless, 
the highest effect was observed when both the Ht and 
LST information were simultaneously added to the SR 
information. The Macro F1-score and K were increased 
by as much as 2 and 3% when the Ht information was 
added to SR, as much as 5 and 6% when the LST was 
added to SR, and as much as 12 and 11% when both the 
Ht and LST information was included with SR in the 
LULC classification. 

Further, based on Tables 3–6, a varying magnitude of 
accuracy improvement was observed in each class. 
When the Ht information was added to SR information, 
the highest individual increase was observed in both 
agriculture and built-up with a value of 0.04, followed by 
forest with a value of 0.02, and then bareland, grassland, 
and water with an increase of 0.01. As to the effect of the 
LST, the highest increase was observed in agriculture 
with a value of 0.09, followed by built-up with a value 
of 0.07, then both forest and grassland with a value of 
0.06, bareland with an increase of 0.02, and lastly, the 

Table 6. Accuracy assessment of the LULC product generated using SR, Ht, and LST information.

SR- Ht-LST
Observed classes

Bl Bu F Gl Ag W Total

C
la

ss
ifi

ed
 c

la
ss

es

Bl 1329 2 0 6 10 0 1347

Bu 8 241 0 5 1 0 255

F 5 12 1910 23 22 0 1972

Gl 37 19 36 821 32 0 945

Ag 13 5 49 36 396 0 499

W 0 0 0 0 0 1483 1483

Total 1392 279 1995 891 461 1483 6501

Precision 0.99 0.95 0.97 0.87 0.79 1.00

Recall 0.95 0.86 0.96 0.92 0.86 1.00

F1-score 0.97 0.90 0.96 0.89 0.83 1.00

Macro F1-score = 0.93; K = 0.94; overall accuracy = 0.95

water with an increase of 0.01. When both the Ht and 
LST information was added, the highest increase was 
observed in built-up with a value of 0.23, agriculture 
with a value of 0.18, then grassland with 0.12, bareland 
with 0.08, forest with 0.06, and lastly, water with 0.02. 
The analysis indicates that the accuracy of water was the 
most stable among the other classes, whereas the built-up 
and agriculture suffered the most misclassification when 
only the SR information is used in LULC classification.

DISCUSSION

Comparison of the LULC Products in This Study 
with the Global-scale LULC Products 
Figures 5 and 6 display the LULC maps of the study 
sites, which were derived from existing global-scale 
LULC products such as GLAD and ESRI, respectively. 
It was previously reported that the global accuracy of 
GLAD and ESRI LULC products stood at 78.35 and 
86%, respectively. However, upon using locally collected 
ground truth data as the validation dataset, the overall 
accuracy of the GLAD and ESRI products decreased to 
77 and 73%, respectively. This represented a decrease in 
accuracy of 1.35% for the GLAD product and 13% for 
the ESRI product. Comparing the Macro F1-score and 
K, it was found that the accuracy of the GLAD and ESRI 
LULC products in this study was lower by as much as 20 
and 23%, as well as 34 and 30%, respectively, compared 
to the SR-Ht-LST products. 

According to the variation in area coverage for each 
class depicted in Table 7, it can be observed that both the 
GLAD and ESRI products underestimated the extent of 
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Table 7. Comparison of the area percentage distribution of the 
LULC product in this study (SR-LST-Ht) with the global-
scale LULC products (based on the boundary of GLAD 
LULC product).

LULC class

Area (%)

This study Global-scale LULC product

SR-LST-Ht GLAD ESRI

Bl 2.20 0.17 0.10

Bu 0.53 0.66 0.89

F 20.33 21.40 23.26

Gl 8.64 10.95 8.55

Ag 1.73 0.33 0.23

W 66.58 66.50 66.96

Cloud cover 0.003

Total 100%

Figure 5. LULC map of the study sites based on the GLAD LULC product.

Figure 6. LULC map of the study sites based on the ESRI LULC product.

agriculture and bareland while overestimating the areas of 
built-up, forest, and water. Specifically, the GLAD product 
overestimated the area of grassland, whereas the ESRI 
LULC product underestimated it. In this study, no cloud 
cover was classified, as it was masked out, and the GLAD 
product also did not include cloud cover. However, the 
ESRI product accounted for cloud cover, which occupied 
an area equivalent to 0.003% of the entire study site.

Accurate information is crucial during LULC planning 
and the formulation of policies for restoration and 
protection. While global-scale LULC maps are essential 
for monitoring land and water resources, there is a 
trade-off in terms of accuracy. LULC maps generated 
with broader coverage often exhibit decreased accuracy 
due to various factors. The generation of LULC maps 
covering large areas typically involves using satellite 
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images and reference data acquired at different times, 
leading to reduced accuracy of the final LULC product 
(Herold et al. 2008; Gong et al. 2013). Other contributing 
factors include atmospheric noise in satellite data images, 
low spatial resolution of open-sourced data, lack of 
easily interpretable and automated classifiers, and non-
uniformity in classification systems and techniques. 
Consequently, the accuracy of LULC maps, including 
global-scale maps, is generally lower, ranging from 
67–81% (DeFries et al. 1998; Hansen et al. 2000; Friedl et 
al. 2010; Gong et al. 2013; Chen et al. 2015; Buchhorn et 
al. 2019; Sulla-Menashe et al. 2019). This lower accuracy 
results in inconsistent and inaccurate classification when 
applied to localized contexts (Herold et al. 2008; Gong et 
al. 2013), leading to unrealistic and problematic outcomes 
(Congalton et al. 2014; Tsendbazar et al. 2015).

In contrast, locally produced LULC maps – despite their 
limitations in terms of area coverage – often exhibit 
higher accuracy. Consequently, when accuracy is a critical 
consideration and the focus is on smaller coverage areas, 
locally generated LULC maps prove to be more reliable. 

Comparison of the LULC Mapping in This Study 
with the Other Studies Conducted within the 
Philippines
As recalled from the results, the integration of LST and 
Ht information with the SR of Landsat data improved 
the overall accuracy of the LULC classification from 
89 to 95%. Several LULC monitoring had already been 
conducted in the Philippines, and the reported overall 
accuracy ranged from 82.97–90.58%. For instance, 
Merida and Perez (2017) conducted LULC changes in the 
three main islands of Batanes – namely, Batan, Itbayat, and 
Sabtang – from 1989, 1997, 2000, 2007, 2010, and 2016 
using the SR of Landsat images and SVM as a classifier. 
From their analysis, they reported overall accuracies of 
87.63, 87.98, 82.97, 84.47, 88.07, and 86.97% for 1989, 
1993, 2000, 2007, 2010, and 2016, respectively. Further, 
they reported an upward trend of forest cover on the 
island of Batan, whereas a relatively stable forest cover 
for Sabtang and Itbayat. In Mt. Pulag National Park, 
Doyog et al. (2021) monitored the LULC changes on a 
10-year basis from 1990–2020 using the SR of Landsat 
and Sentinel images and MLC. From their analysis, they 
have reported overall accuracy of 86.91, 87.43, 89.01, and 
90.58% for 1990, 2000, 2010, and 2020, respectively. On 
the other hand, Clarin et al. (2021) used the SR of Landsat 
images and MLC to perform LULC monitoring in Mactan 
Island, Cebu and reported overall accuracy of 86.2% for 
the year 2000 and 86.4% for 2018, whereas Estoque and 
Murayama (2011) reported overall accuracy of 86.86% 
(1988), 87.18% (1998), and 89.10% (2009) of the land use 
and cover of Baguio City produced using remote sensing 
images and MLC. 

To summarize, the SR of Landsat images was the only 
feature that was used in the LULC classification of the 
previous studies. The overall accuracy in this study when 
using only the SR of Landsat images is comparable with 
the reported studies. However, the addition of the LST and 
Ht information made the overall accuracy of the LULC 
performed in this study superior. 

The use of SR features of satellite images can provide 
reliable LULC classification results. However, issues 
are still observed in separating LULC classes from each 
other. For instance, the study by Merida and Perez (2017) 
showed that built-up was classified as a barren area. In 
this case, with the addition of Ht information to the SR 
features, it can be separated since barren areas are likely 
to have low Ht values, whereas built-up – especially 
buildings – have Ht values higher than barren areas. 
Therefore, the addition of other features like Ht and LST 
is an advantage to achieving higher accuracy and more 
reliable LULC classification. 

As to the observed trends of LULC changes in the 
Philippines, the decreasing trend is usually observed 
in natural LULC – especially the forest, grassland, and 
bareland areas – and an increasing trend in human-
intervened LULC like agriculture and built-up areas. It is 
observed that the decrease in forest cover, grassland, and 
bareland areas is mainly due to agriculture and built-up 
expansion. Mitigating actions are, therefore, needed for 
the protection of the environment while catering to the 
needs of the present and future populations. 

CONCLUSION
This study demonstrated the utilization of multi-sourced 
data – including SR, Ht, and LST – in RF-based LULC 
classification. The integration of Ht and LST information 
positively influenced the accuracy of the RF classifier 
when using Landsat imagery for LULC classification. 
Notably, the addition of Ht and LST information to SR 
before LULC classification significantly improved the 
accuracy. By incorporating Ht and LST information into 
the SR data, the RF-based LULC classification achieved 
optimal performance, yielding a Macro F1-score of 0.93 
and a K value of 0.94. The inclusion of Ht and LST 
resulted in a 12% increase in Macro F1-score and an 
11% increase in K when compared to the classification 
based solely on SR. These findings highlight that the 
simultaneous use of SR, Ht, and LST as input data allows 
the RF-based LULC classification to attain the highest 
level of accuracy. The outcomes of this study provide a 
LULC classification protocol that incorporates reliable 
information for assessing the state of the Earth's natural 
resources.
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