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Inheritance Pattern of Huntington’s Disease, 
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Evolutionary game theory (EGT) is one of several major developments of game theory. EGT 
covers ecology and population genetics, among other fields in biology. Most studies in EGT 
were on a two-player game but non-linearities in biology often occur that need to be considered. 
Huntington's disease (HD), named after the person who wrote the first detailed description of 
the disease in 1872, is a neurodegenerative disease that is inherited. This is a case in population 
genetics, which follows the inheritance pattern called the dominant lethal. In this study, we 
presented this disease as a multiplayer game among the alleles of the HD gene. We utilized 
Gokhale and Traulsen’s model, wherein a payoff matrix for a four-player game was reduced 
into a payoff matrix for a two-player game.  Depending on the fitness values of each genotype, 
we have determined that populations consisting of both Huntington and normal alleles may 
converge to either a purely Huntington, a purely normal, or a mixed composition where both 
types of genes coexist. If the normal genotype produces more surviving offspring than the other 
genotypes, then even if a small frequency of normal alleles is injected into a purely Huntington 
population, the population will be replaced by the normal genotype over time. Such a result was 
obtained using replicator dynamics and analysis of the stability of equilibrium points. Similar 
analyses on other genotypes were provided in relation to the inheritance pattern of HD.

Keywords: evolutionarily stable, evolutionary game theory, lethal alleles, population genetics, 
replicator dynamics, strategies
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INTRODUCTION
Game theory is the study of mathematical models of 
conflict and cooperation between rational intelligent 
decision-makers. The players are assumed to be perfectly 
rational and have the same idea of being rational. Rational 
decision-making in a game means that a player tries to 
maximize his own profit or payoff based on his own 
beliefs about how other players are going to play (Aguirre 
2008). It was only in the 1990s that the emphasis shifted 
toward evolutionary models because of the limitations 
of rationality-based models (Samuelson 2022) and a 

change in the underlying view of what games represent. 
Games were previously typically interpreted as a literal 
description of an idealized interaction with perfect 
rationality. Now, games are commonly interpreted as 
just an approximation of an actual interaction. Rubinstein 
(1991) mentioned that game theory is an analysis of the 
concepts used in social reasoning and not an attempt to 
predict behavior. Thus, perfect rationality seems less 
appropriate (Samuelson 2022).

Evolutionary game theory or EGT is one of several 
major developments of game theory. It covers ecology 
and population genetics, among other fields in biology. 
EGT studies the strategic interactions of individuals in 
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a population (Hennes et al. 2020). Evolutionary game 
dynamics can be described in this process: the players 
of the game can be individuals in a population, and their 
strategies can be the characteristics or traits they are 
born with. The probabilities assigned to their strategies 
are influenced by natural selection, which includes five 
elements: the multiplication of chances, variation, struggle 
for existence, heredity, and survival of the fittest (Howerth 
1917). Individuals who receive higher payoffs from their 
strategies are said to be more successful than those who 
receive lower payoffs (Sandholm 2010). 

EGT also discusses the concept of an evolutionarily 
stable strategy or ESS. In 1973, Maynard Smith and Price 
introduced this central concept, which is a refinement of 
Nash equilibrium from classical game theory (Maynard 
Smith and Price 1973). In a two-person game, a Nash 
equilibrium is a pair of strategies that are best replies to 
each other, the best reply being a strategy that maximizes 
a player’s payoff, given the strategy chosen by the other 
player. On the other hand, a strategy is evolutionarily 
stable if a population playing that strategy cannot be 
dominated by a small number of individuals playing 
another strategy. In 1989, Dawkins suggested that ESS 
is potentially one of the most important advances in 
the theory of evolution since Darwin. This is because 
the concept of ESS is applicable wherever a conflict of 
interest is involved. He added that through this concept, 
a collection of individual entities can resemble a single 
organized whole entity, a development that has the 
potential to revolutionize ecology (Dawkins 1989).

Both the studies of Taylor and Jonker (1978) and Zeeman 
(1980) discussed ESS and game dynamics prior to the 
introduction of the replicator dynamics to EGT. Replicator 
dynamics illustrate the evolution of behavior in conflicts 
occurring within a species in a large population (Bomze 
1995). Bomze added that population genetics is an 
important field for the application of replicator dynamics 
as it describes how frequencies of types in a population 
change over time. It is a dynamic system that determines 
the tendency of individuals to play strategies that would 
give a payoff higher than the average population value 
(Hennes et al. 2020). Replicator dynamics provided a 
straightforward relationship between classical game 
theory's Nash equilibrium and EGT's ESS (Hofbauer and 
Sigmund 1998). Through the replicator dynamics, we 
know that an ESS is also a Nash equilibrium of the game. 
This result was also earlier provided by Weibull (1997). 
He stated that for a strategy to be evolutionarily stable, it 
must be a Nash equilibrium itself. However, the converse 
of the statement cannot always be the case. Not all Nash 
equilibria are evolutionarily stable strategies.

EGT remained confined in the context of two-player 
analysis and the applications focused on cells (Bach et al. 

2001; Basanta and Deutsch 2008). However, interactions 
in biology can be highly non-linear (Shirakihara and 
Tanaka 1978). Rowe (1998) presented an example of 
these non-linear interactions through a game theory 
model for a general diploid system where the strategies 
are the different genotypes. He considered systems 
with two alleles and three genotypes and systems with 
three alleles and six genotypes. This study considers a 
diploid population with two alleles and three genotypes. 
In evolutionary games, when strategies are thought 
of as alleles, analysis is usually restricted to haploid 
populations (cells with only one set of chromosomes). 
However, according to Han (2012), it has recently become 
possible to derive results for equilibrium points, even 
in the context of diploid populations (cells with two 
sets of chromosomes). Using replicator dynamics, the 
equilibrium points of a dynamical system represent the 
composition of allele frequencies where each allele has the 
same average fitness. They also help predict a coexistence 
of these strategies, which is important in the maintenance 
of polymorphism. In addition, Han (2012) explored the 
probability of having all strategies present in a system, 
given a maximal possible number of equilibrium points. 
This provides an approximation for the maximal level of 
biodiversity in a biological system. 

In population genetics, several comparisons between game 
theory and some standard models of population genetics 
were explored (Sigmund 1987a, b). Rowe (1987) derived a 
model for the average fitness to be the sum of each average 
payoff multiplied by a corresponding proportion of the 
total population. Gokhale and Traulsen utilized this sum 
when they computed the average payoffs of strategies of a 
multiplayer game, which results in a non-linear interaction 
(Gokhale and Traulsen 2014). In their paper, they provided 
a model for a multiple-player game that starts from a 
symmetric four-player two-strategy game. This kind of 
game can be reduced into a symmetric two-player two-
strategy game in the process of solving for equilibrium 
points. This model will be applied in this study.

In Gokhale and Traulsen’s model, the inheritance pattern of 
a disease called Huntington’s disease (HD) will be treated 
as a multiplayer game in the context of EGT. Named after 
the person who wrote the first detailed description of the 
disease in 1872, HD is a neurodegenerative disease that is 
inherited. Although it can occur in all racial groups, it is 
most common among people of northern European origin. 
On average, the age of onset of its symptoms is around 
40 years. Loss of balance and involuntary, irregular, and 
unpredictable muscle movements, also called chorea, 
aside from noticeable cognitive or personality changes, 
are usually the symptoms that appear early. Other 
symptoms that characterize this disease are progressive 
motor, cognitive, and psychiatric symptoms. It is an 
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uncommon disease, but it can be devastating for those 
who are affected. Following onset, the disease's duration 
is roughly 10–15 years, although some have been known 
to survive for 30 years (Stipe et al. 1979). HD is not fatal, 
although secondary complications such as heart failure 
or pneumonia usually led to the death of someone with 
the disease. There are no treatments for the disease as of 
current, but disease-modifying treatments are being tested 
on animal models (Imarisio et al. 2008). Thus, the only 
treatment available is for managing the symptoms.

A positive predictive or diagnostic result of HD leaves a 
huge impact on the tested patient. The family members of 
the said patient may also be a carrier of HD (Novak and 
Tabrizi 2010). It is believed that most families which have 
an affected member have more than one affected member, 
and several more are at risk of manifesting the disease 
in the future. An affected parent's offspring has a 50% 
chance of inheriting this abnormality. HD's risk does not 
skip and continues uninterrupted through generations, and 
male and female offspring are affected equally (Novak and 
Tabrizi 2010). HD is a single-gene disease with autosomal 
dominant inheritance. This means that the gene is located 
on a chromosome other than the sex chromosome. Hence, 
it is not sex-linked.

APPLICATION OF GOKHALE AND 
TRAULSEN’S MODEL
EGT in population genetics begins with a game that 
can be used as a model of some strategic interaction 
an organism might participate in. In general, EGT may 
approach population genetics in two different ways. This 
can either be with gene dynamics or as dynamics on the 
phenotypic level, which occurs based on a known genetic 
setup. This study deals with the latter. Here, the pure 
strategies will be interpreted as alleles, and the mixed 
strategy of the players assign the probabilities equal to 
the respective frequencies of the alleles in the population. 
The payoffs of these interactions are considered the 
organism's fitness so that a strategy that receives higher 
payoffs in the game can be generally expected to increase 
in frequency. The population is assumed to be infinite and 
well-mixed. This means that every individual has the same 
probability to interact with any other individual in the 
population. Furthermore, there should be no mutations in 
the population. The model they presented can handle non-
linearities and Mendelian inheritance patterns. Mendelian 
inheritance refers to certain patterns of how traits are 
passed from parents to offspring. These general patterns 
were established by Gregor Mendel, who performed 
experiments with thousands of pea plants in the 19th 
century (Biology LibreTexts 2022). In his experiments, 

inherited traits that are unchanged in the breeding process 
are referred to as dominant traits, whereas recessive traits 
are those that disappear in the offspring.

We present a game based on Mendelian inheritance 
starting from the viewpoint of an allele. As part of the 
mating process, one individual, either paternal or maternal, 
is characterized by two alleles. Each of the parents 
contributes one of their alleles, resulting in two alleles 
transferred to the offspring. However, an allele must first 
consider the effects of the three other alleles. That is, 
pairing with one of the three other alleles one at a time 
may have varying effects on the outcome for each time. 
Gokhale and Traulsen (2014) provided an arrangement 
for a four-player game in which the payoffs for the alleles 
are given. This is shown in the following matrix, where 
𝐴 and 𝑎 are alleles:

This arrangement of players takes into consideration 
mating between two diploid individuals. In EGT, this 
matrix refers to a multiplayer game with two strategies 
and four players. The focal player (Player 1) is the row 
player, and the combination of strategies possible for the 
remaining three players (Players 2, 3, and 4) is given by 
the columns. The ordering of the column players does 
not matter. Thus, playing with 𝐴𝐴𝑎 will be the same as 
playing with 𝑎𝐴𝐴 or 𝐴𝑎𝐴, for instance.

Each of Players 1, 2, 3, and 4 can either be an 𝐴-type or an 
𝑎-type. This results to three possible kinds, or genotypes, 
of parents – namely, 𝐴𝐴, 𝐴𝑎, and 𝑎𝑎. If the fitness of 𝐴𝐴, 
𝐴𝑎, and 𝑎𝑎 are 𝑎, �, and �, respectively, then the values 
of the payoffs in terms of these fitness were given in the 
paper as shown:

Given 𝑥 as the frequency of the 𝐴 allele, they arrived at 
the following average payoffs:

                              �𝐴 = �𝑥 + β( 1 − 𝑥)                           (1) 
                               �𝑎 = β𝑥 + γ( 1 − 𝑥)                           (2)

Hence, the payoff matrix for a two-player two-strategy 
game given below may be used:
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𝐴     𝑎    �
𝐴   𝑎

𝑎     �    �
� � (3)

Now, we apply this model to HD. HD follows a Mendelian 
inheritance pattern. The Huntington allele 𝐻 is the dominant 
trait. Thus, offspring only need one copy of the allele 𝐻 
to express the disease. The absence of the disease will be 
denoted by �. If a heterozygous (𝐻�) man with HD and a 
normal woman (��) have children, some of them (about 
half on average) will have the disease. If we map 𝐻 to 𝐴 
and � to a, we have a particular application of a Mendelian 
inheritance pattern in the context of EGT. The detailed 
computation of the payoff matrix for a symmetric four-
player two-strategy game for the inheritance pattern of the 
HD may be found in the study by Lim and Villamin (2022).

EVOLUTIONARY STABLE 
STRATEGIES (ESS)
Maynard Smith and Price (1973) introduced the central 
concept of an evolutionarily stable strategy (ESS). A 
strategy is evolutionarily stable if a population playing 
that strategy cannot be dominated by a small number of 
individuals playing a different strategy. In other words, 
an ESS is a Nash equilibrium, which is evolutionarily 
stable (Weibull 1997). Throughout the paper, discussions 
on ESS are in the context of two players – specifically, 
a symmetric two-player game following Gokhale and 
Traulsen’s model.

The following proposition from Weibull (1997) will be 
used for the rest of the paper to compute for the ESS.

Proposition 1. A mixed strategy 𝑥 ∈ ∆ is said to be an 
ESS if and only if the conditions

are met.

Suppose we have two players, and Player 2 uses the 
mixed strategy 𝑥. If 𝑥 is an ESS, then Player 1’s payoff 
when using any mixed strategy 𝑦 cannot be higher than 
his payoff when using 𝑥. This is the first condition from 
Proposition 1. If Player 1, when using any mixed strategy 
𝑦 � 𝑥, can earn a payoff equal to his payoff when using 
𝑥, then Player 1’s payoff when using that strategy 𝑦 must 
be lower than his payoff when using 𝑥, provided Player 
2 also uses 𝑦.

In this paper, the notion of replicator dynamics will be 
utilized to determine the possible stable strategy of the 

game, if any. The replicator equation was introduced by 
Taylor and Jonker (1978) in their study, “Evolutionarily 
Stable Strategies and Game Dynamics.” It is the first game 
dynamics studied in connection with EGT. The concept 
of replicator dynamics is used to express the evolutionary 
dynamics of an entity called replicator, which has means 
of making more or less accurate copies of itself. In this 
study, our replicator is a gene. In EGT, replicators are 
strategies, which compete for dominance according to the 
payoff they yield in interaction. The payoffs are interpreted 
as the replicator’s fitness.

There are a few assumptions involved in the framework, 
which led to the replicator equation. The population 
is assumed to be infinite and well-mixed, i.e. every 
individual has the same probability to interact with any 
other individual in the population. Furthermore, there 
should be no mutations in the population. Taking these 
into account, we consider the alleles 𝐻 and � of the 
HD to be the replicators with frequencies 𝑥 and 1 − 𝑥, 
respectively. Together with their fitness �𝐻 and �ℎ, we 
have the replicator equation (Gokhale and Traulsen 2014):

(4)

Here, 𝑥̇ represents the change in 𝑥 with respect to time. 
Note that the resulting expansion on the right-hand side 
is non-linear.

The critical points of the replicator equation are obtained 
by finding the roots of 𝑥̇ . This gives us 𝑥 = 0, 𝑥 = 1, and 
solutions to the equation �𝐻 = �ℎ. Thus, we have these 
three states: [a] the population consists of only 𝐻 alleles, 
[b] the population consists of only � alleles, or [c] alleles 
𝐻 and � have equal fitness. We now solve for the last state. 

From Equations 1 and 2 with the payoffs given in Equation 
3, we have:

Thus, our candidates for ESS are the pure strategies 𝐻 
and �, which respectively correspond to 𝒆¹ = (1,0), 𝒆² = 

(0,1), and the mixed strategy 
. The following theorem gives some parameters for these 
points to be evolutionary stable. 

Theorem 1. Let 𝐺 = (𝐻, ℎ) be a symmetric two-player 
game with the payoff matrix given by Matrix 3.

1.	 If α ≤ β whenever β < γ or α < β whenever β = γ, 
then 𝒆² ∈ ∆𝐸𝑆𝑆.

2.	 If β ≥ γ whenever α > β  or β > γ whenever � = β, 
then 𝒆¹ ∈ ∆𝐸𝑆𝑆.
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3.	 If α > β and β < γ, then 𝒆¹,  𝒆² ∈ ∆𝐸𝑆𝑆.

4.	 If α < β and β > γ, then .

Proof. Consider the payoff matrix given in Matrix 3.

1. Consider the pure strategy 𝒆² and an arbitrary mixed 
strategy  𝑦 =  (𝑦₍₁₎, 𝑦₍₂₎) ∈ ∆, where 𝑦₍₁₎ and 𝑦₍₂₎ are 
respective proportions of alleles 𝐻 and ℎ in a population. 
Suppose α ≤ β whenever � < γ or � < β whenever � = 
γ. Let β ≤ γ. The first condition from the definition of an 
ESS in Proposition 1 is 𝑢(𝑦, 𝒆²) ≤ 𝑢(𝒆²,  𝒆²) Ɐ𝑦. We have:

(5)

and

(6)

Observe that for all 𝑦, which implies for all 𝑦₍₂₎ ∈ [0,1], 
we have:

(7)

which is always nonnegative because 𝑦₍₁₎ is nonnegative 
and β ≤ γ. Thus, 𝑢(𝑦, 𝒆²) ≤ 𝑢(𝒆²,  𝒆²) Ɐ𝑦. Hence, the first 
condition of an ESS is satisfied.

Now suppose 𝑢(𝑦, 𝒆²) ≤ 𝑢(𝒆²,  𝒆²). From Equation 7, it 
implies either 𝑦₍₁₎ =  0 or −β + γ = 0, which is equivalent 
to 𝑦 =  (0,1) = 𝒆² or β = γ, respectively. The second 
condition from the definition of an ESS is 𝑢(𝑦, 𝑦) < 𝑢(𝒆², 
𝑦)  Ɐ𝑦 � 𝒆². Thus, we will not consider 𝑦 = 𝒆². We then 
assume that β = γ. Consequently, α < β.

We then have:

(8)

and 

(9)

Observe that for all 𝑦, which implies for all 𝑦₍₁₎ ∈ (0,1], 
we have:

(10)

which is always positive because α < β. Thus, 𝑢(𝑦, 𝑦) < 
𝑢(𝒆²,  𝑦)  Ɐ𝑦 � 𝒆². Hence, the second condition of an ESS 
is satisfied. Therefore, 𝒆² = (0,1) is an ESS.	

2. Consider the pure strategy 𝒆¹ and an arbitrary mixed 
strategy 𝑦 =  (𝑦₍₁₎, 𝑦₍₂₎) ∈ ∆.

Suppose � ≥ γ whenever   � > � or � > γ whenever � 
= �. Let α ≥ β. We have:

(11)

and
(12)𝑢(𝒆¹,  𝒆¹ ) = α

It can be observed that for all 𝑦, where 𝑦₍₂₎ ∈ [0,1], we 
have:

(13)

which is always nonnegative, and the first condition of 
an ESS is satisfied.

Now suppose 𝑢(𝑦, 𝒆¹) = 𝑢(𝒆¹,  𝒆¹). Equation 13 implies 
either 𝑦₍₂₎ =  0 or α − β = 0. Similar to the proof of 
Equation 1, we will not consider 𝑦 =  𝒆¹. We then assume 
that α = β. Consequently, β > γ. We then have:

𝑢(𝑦, 𝑦) = β + 𝑦₍₂₎²(−β + γ) (14)

and

𝑢(𝒆¹,  𝑦) = β (15)

Observe that for all 𝑦:

                    𝑢(𝒆¹,  𝑦) − 𝑢(𝑦, 𝑦) = 𝑦₍₂₎²(β − γ),          (16)

which is always positive, and the second condition of an 
ESS is satisfied. Therefore: 𝒆¹ = (1,0) is an ESS.

3. Consider the pure strategies 𝒆¹ and 𝒆² and an arbitrary 
mixed strategy 𝑦 =  (𝑦₍₁₎, 𝑦₍₂₎) ∈ ∆. Let � > β and β < γ. 
From Equations 7 and 13, the first condition of an ESS 
in Proposition 1 is satisfied.

For 𝒆², the second condition requires the assumption 
of 𝑢(𝑦, 𝒆²) = 𝑢(𝒆²,  𝒆²). From Equation 7, the previous 
equation is satisfied only when 𝑦₍₁₎ = 0    because we 
already assumed β < γ. The equation 𝑦₍₁₎ =  0 is equivalent 
to  𝑦 =  (0,1). The desired conclusion 𝑢(𝑦, 𝑦) < 𝑢(𝒆²,  𝑦)  
Ɐ𝑦 � 𝒆² then becomes vacuously satisfied because there 
is no other value of 𝑦 aside from (0,1) = 𝒆².

Similarly, for 𝒆¹,  𝑢(𝑦, 𝒆¹) = 𝑢(𝒆¹,  𝒆¹) is satisfied only 
when 𝑦₍₂₎ =  0 from Equation (15). Equivalently 𝑦 = 
(1,0), because we already assumed α > β. The desired 
conclusion 𝑢(𝑦, 𝑦) < 𝑢(𝒆¹,  𝑦)  Ɐ𝑦 � 𝒆¹ will also be 
vacuously satisfied because there is no other value of 
𝑦 aside from (1,0) = 𝒆¹. Therefore, 𝒆¹ and 𝒆² are ESS.

4. Consider the mixed strategies 
.
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Then:

(17)

and

(18)

Since 𝑢(𝑦, 𝑥) = 𝑢(𝑥, 𝑥)   Ɐ𝑦, the first condition is satisfied.

Let α < β and β > γ . An immediate consequence is α − 
2β + γ < 0. For the second condition of an ESS, we have:

(19)

and

(20)

We consider all possible values of 𝑦 except 𝑦 =  𝑥. Thus, 
for all , we have:

(21)

which is always positive. Thus, 𝑢(𝑦, 𝑦) < 𝑢(𝑥, 𝑦) Ɐ𝑦 
� 𝑥 and the second condition is satisfied. Therefore, 

 is an ESS.

ANALYSIS
Following the model of Gokhale and Traulsen (2014), α, 
β, and γ are the respective (relative) fitness of the three 
possible genotypes 𝐻𝐻, 𝐻�, and ��. Relative fitness is 
defined as the average number of surviving offspring of 
a parent with a corresponding genotype (i.e. the absolute 
fitness of a genotype) relative to a reference genotype. 
Hence 𝑓��, 𝑓��, and 𝑓�� are the absolute fitness of 𝐻𝐻, 
𝐻�, and ��, respectively. We can then assign for instance 
𝐻� as a reference genotype and obtain the following 
equalities:

Throughout the illustrations, we consider the heterozygote 
genotype, where β = 1. Consequently, when α > 1 (or 
𝑎 < 1), the homozygous Huntington class is more (or 
less) fit than the heterozygous Huntington class. This 
means that a homozygote parent for HD can produce 

more (or less) surviving offspring than a heterozygote 
parent. Similarly, the expression β > γ is equivalent to 
saying that the heterozygous Huntington class is more fit 
than the homozygous normal class. Thus, a heterozygote 
parent for HD can produce more surviving offspring than 
a homozygote parent for the normal type. The explanation 
for the remaining expressions α = β, α < β, β = γ , and 
β < γ are analogous.

Illustration 1. From Theorem 1 Item 1, we assume α ≤ 
β < γ. This means that �� is the most fit type, and type 
𝐻� is at least as fit as type 𝐻𝐻. Setting α = 0.8 , β = 1, 
and γ = 1.2, and substituting to Equation 4 yields the 
replicator equation:

with graph shown in Figure 1.

Figure 1 shows various curves for selected values of α 
and γ such that α ≤ β = 1 < γ. Curves similar to blue 
(α = 0.2, γ = 1.8), orange (α = 0.4, γ = 1.6), gray (α = 
0.6, γ = 1.4), and yellow (α = 0.8 , γ = 1.2), which are 
symmetric with respect to 𝑥 = 0.5, are obtained when the 
difference between the fitness values of types 𝐻𝐻 and 𝐻� 
is the same as the difference between the fitness values of 
types 𝐻� and ��. Curves similar to light blue (α = 0.2, 
γ = 1.2 and green (α = 0.4, γ = 1.4), which are skewed 
closer to 𝑥 = 1, are obtained when the difference between 
the fitness values of types 𝐻𝐻 and 𝐻� is more than the 
difference between the fitness values of types 𝐻� and ��. 
Curves similar to dark blue (α = 0.6, γ = 1.6) and maroon 

Figure 1. Illustration of Theorem 1 Item 1, α ≤ β whenever � < γ 
for different values of � and �, with � = 1.

(α = 0.8, γ = 1.8), which are skewed closer to 𝑥 = 0, are 
obtained when the difference between the fitness values 
of types 𝐻𝐻 and 𝐻� is less than the difference between 
the fitness values of types 𝐻� and ��.

Since 𝑥̇  represents the change in 𝑥 over time, a zero 𝑥̇  
implies an equilibrium point, whereas a positive (negative) 
value of 𝑥̇  means that 𝑥 will increase (decrease). In Figure 
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1, the value of 𝑥̇  is  0 when 𝑥 = 0 or 𝑥 = 1 and negative 
for any value of 𝑥 in between. This implies 𝑥 = 0 and 𝑥 
= 1 are equilibrium points. There will be no change in the 
frequency of 𝐻 alleles if the entire population consists of 
only 𝐻 alleles, i.e. all Huntington, or only �, i.e. all normal.

To further explain, suppose we have a purely Huntington 
population at the parental generation, i.e. 𝑥 = 1 . Since all 
players of the game are 𝐻 alleles, then the only possible 
mating that we can generate is between two homozygote 
parents for the Huntington gene, i.e. 𝐻𝐻 × 𝐻𝐻. This 
mating will always produce offspring of the same 
genotype. Hence, at the first generation of offspring, no � 
alleles are produced and so the frequency of 𝐻 remains at 
𝑥 = 1 . Repeating this over time will yield the same result 
for the second, third (and so on) generations of offspring. 
The same thing happens for the other equilibrium point 𝑥 
= 0, which represents a purely normal population, i.e. all 
players of the game are � alleles.

On the other hand, if we have any mixed population (we 
will use the term "mixed population" throughout these 
illustrations to refer to mixed strategy) (𝑥, 1 −   𝑥), where 
𝑥 ∈ (0,1), the frequency of 𝐻 alleles will decrease.

Suppose we start with the mixed population (0.4, 0.6) at 
the parental generation. This means that the proportion 
of Huntington allelles in the population is 𝑥 = 0.4, 
whereas the proportion of normal alleles is 1 − 𝑥 =  0.6. 
Since both players are present in the game, there is now 
a possibility for heterozygous offspring to be produced 
and for both alleles to be preserved in the population for 
another generation. This can happen when 𝐻𝐻 parents 
interact with �� parents or when 𝐻� parents are formed 
and interact with parents of any genotype. We compute 
for the change on the frequency of 𝐻 after one generation. 
Substituting 𝑥 = 0.4 to Equation 4 gives us 𝑥̇ = −0.048, 
which means a negative change on the frequency of 𝐻. 
Consequently, the frequency of 𝐻 alleles decreases to 
𝑥 =  0.352 at the first generation of offspring. Another 
iteration of the same process with 𝑥 =  0.352 gives us 𝑥̇ 

= −0.0456192, and the frequency of 𝐻 decreases further 
to 𝑥 =  0.3063808 at the second generation of offspring. 
Repeating this process over time eventually pushes the 
frequency 𝑥 of Huntington alleles to the equilibrium point 
𝑥 = 0. This is shown by the yellow curve in Figure 2. 
Similar results can be observed if we start with any value 
of 𝑥 ∈ (0,1), in particular, with 𝑥 = 0.5 (light blue) or 𝑥 
= 0.8 (maroon). Hence, the population would eventually 
be completely dominated by normal alleles, and the 
Huntington alleles would become extinct.

On the other hand, small disturbances at 𝑥 = 1 – 
specifically, a decrease – cause the frequency of 𝐻 to 
continue decreasing and not return to the original state 𝑥 
= 1. This is because 𝑥̇  will then become negative. For 
example, suppose we have a purely Huntington population 
at 𝑥 = 1. If even a small frequency of normal alleles is 
injected into this large population of Huntington alleles, 
then we now have 𝑥 < 1. By Equation 4, this value will 
generate a negative 𝑥̇ , which means a decrease in the 
population frequency. Over time, this frequency will 
continue to decrease until it reaches 𝑥 = 0, or when all 
Huntington alleles have now become extinct, and the 
population is replaced by normal alleles. 

Illustration 2. The second part in the first item of Theorem 
1 will be illustrated here. We consider α < β = γ. We set 

Figure 2. Trajectories of 𝑥 with α = 0.8, � = 1, and γ = 1.2.

Figure 3. Illustration of Theorem 1 Item 1, � < � whenever � = 
� for different values of �, with � = � = 1.

α = 0.8, β = γ = 1 as an example, and this gives us the 
replicator equation:

with graph shown in Figure 3.

Figure 3 shows various curves for select values of α and  
γ such that � < β = γ. We still have β = 1. Observe that 
all curves are skewed closer to 𝑥 = 1. The blue curve is 
obtained when α = 0.1, while the following curves are 
obtained respectively as α increases in 0.1 increments: 
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orange, gray, yellow, light blue, green, dark blue, maroon, 
dark gray. Notice that the smaller � is, and consequently 
the wider its gap is with � and �, the lower value of 𝑥̇  is 
generated. In other words, the frequency of Huntington 
alleles always decreases but accomplishes it faster when 
homozygotes parents for HD are unable to produce more 
offspring than heterozygotes and normal parents.

Since the value of 𝑥̇  is also 0 when 𝑥 = 0 or 𝑥 = 1, there 
will be no change in the frequency of 𝐻 alleles throughout 
generations if the entire parental population consists of 
either only Huntington alleles or only normal alleles. On 
the other hand, the value of 𝑥̇  is negative for any value of 
𝑥 in between; hence, 𝑥 in any mixed population is going 
to decrease due to a negative 𝑥̇ .

genotype. Curves similar to blue (α = 1.2, γ = 0.8), orange 
(α = 1.4, γ = 0.6), gray (α = 1.6, γ = 0.4), and yellow (α 
= 1.8, γ = 0.2), which are symmetric with respect to 𝑥 = 
0.5, are obtained when the difference between the fitness 
values of types 𝐻𝐻 and 𝐻ℎ is the same as the difference 
between the fitness values of types 𝐻ℎ and ℎℎ. Curves 
like the light blue (α = 1.2, γ = 0.2) and green (α = 1.4, 
γ = 0.4, which are skewed closer to 𝑥 = 0, are obtained 
when the difference between the fitness values of types 
𝐻𝐻 and 𝐻ℎ is less than the difference between the fitness 
values of types 𝐻ℎ and ℎℎ. Curves like the dark blue (α 
= 1.6, γ = 0.6) and maroon (α = 1.8, γ = 0.8), which are 
skewed closer to 𝑥 = 1, are obtained when the difference 
between the fitness values of types 𝐻𝐻 and 𝐻ℎ is more 
than the difference between the fitness values of types 
𝐻ℎ and ℎℎ. The value of 𝑥̇  this time is positive for any 
value of 𝑥 in between; hence, 𝑥 in any mixed population 

Figure 4. Trajectories of 𝑥 with � = 0.8, � = 1, and � = 1.

We illustrate in Figure 4 the trajectory of 𝑥 in mixed 
populations with different starting points. We see that 
over time, 𝑥 continues to decrease until it converges to 
the equilibrium point 𝑥 = 0. Although it will take a longer 
time as compared to the Illustration 1, the population 
would eventually still be completely dominated by normal 
alleles, and Huntington alleles would become extinct.

On the other hand, small disturbances at 𝑥 = 1 – 
specifically, a decrease – cause the frequency of 𝐻 to 
continue decreasing and not return to the original state 𝑥 
= 1. This is because 𝑥̇  will then become negative.

Illustration 3. From Theorem 1 Item 2, we first assumed 
β ≥ γ whenever α > β, i.e. 𝐻𝐻 is the most fit type and 
type 𝐻� is at least as fit as type ��, by setting α = 1.2, 
β = 1, and γ = 0.8 as an example. This gives us the 
replicator equation:

with graph shown in Figure 5.

Figure 5 shows various curves for select values of α and 
γ such that � > β ≥ γ with β = 1 since it is our reference 

Figure 5. Various curves for different values of � and �, with � = 1.

Figure 6. Trajectories of 𝑥 with � = 1.2, � = 1, and � = 0.8.

is going to increase due to a positive 𝑥̇ .

Similarly, we illustrate in Figure 6 the trajectory of 𝑥 in 
mixed populations with different starting points. We see 
that over time, 𝑥 continues to increase until it converges 
to the equilibrium point 𝑥 = 1. Hence, the population 
would eventually be completely dominated by Huntington 
alleles, and normal alleles would become extinct.
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Small disturbances at 𝑥 = 0 – specifically, an increase – 
cause the frequency of 𝐻 to continue increasing and not 
return to the original state 𝑥 = 0. This is because 𝑥̇ will 
then become positive. For example, suppose we have a 
purely normal population 𝑥 = 0. If even a small frequency 
of Huntington alleles is injected into this large population 
of normal alleles, then we now have 𝑥 > 0. This value 
will generate a positive 𝑥̇ , which means an increase 
in the population frequency. Over time, this frequency 
will continue to increase until it reaches 𝑥 = 1, or when 
all normal alleles have now become extinct, and the 
population is replaced by Huntington alleles.

equilibrium point 𝑥 = 1  . Although it will take a longer 
time as compared to the previous example, the population 
would eventually be completely dominated by Huntington 
alleles, and normal alleles would become extinct. Small 
disturbances at 𝑥 = 0, specifically an increase, cause the 
frequency of 𝐻 to continue increasing.

Figure 7. Various curves for different values of � and �, with � = 1.

Illustration 4. The second part in the second item of 
Theorem 1 will be illustrated here. We consider � = β > 
γ. We set � = β = 1 and γ = 0.8 as an example, and this 
gives us the replicator equation:

with graph shown in Figure 7.

Figure 7 shows various curves for select values of � and 
� such that � = β > γ. Observe that all curves are skewed 
closer to 𝑥 = 0. The blue curve is obtained when γ = 0.1, 
whereas the following curves are obtained respectively 
as γ increases in 0.1 increments: orange, gray, yellow, 
light blue, green, dark blue, maroon, dark gray. Notice 
that the smaller � is – and, consequently, the wider its gap 
is with α and β – the higher value of 𝑥̇  is generated. In 
other words, the frequency of Huntington alleles always 
increases but accomplishes it faster when homozygote 
normal parents are unable to produce more offspring than 
HD parents. The value of 𝑥̇  is positive for any value of 
𝑥 ∈ (0,1); hence, 𝑥 in any mixed population is going to 
increase due to a positive 𝑥̇ .

For this case, Figure 8 shows the trajectory of 𝑥 in 
mixed populations with various starting points. Over 
time, 𝑥 continues to increase until it converges to the 

Figure 8. Trajectories of 𝑥 with � = 1, � = 1, � = 0.8.

Figure 9. Various curves for different values of � and �, with � = 1.

Illustration 5. From Theorem 1 Item 3, we assume � 
> β and β < γ, i.e. 𝐻ℎ is the least fit type, by setting α 
= γ = 1.3 and β = 1 as an example. This gives us the 
replicator equation:

with graph shown in Figure 9.

Figure 9 shows various curves for select values of α and 
γ such that α > β and β < γ. Observe that values of 𝑥̇  in 
every curve is negative from 𝑥 = 0 up to a corresponding 
𝑥– and positive for some 𝑥– to 𝑥 = 1. Curves similar to blue 
(α = γ = 1.3), orange (α = γ = 1.6), and gray (α = γ = 
1.9), which have another equilibrium point at 𝑥– = 0.5, 
are obtained when the fitness values of types 𝐻𝐻 and ℎℎ 
are equal. Curves similar to yellow (α = 1.2, γ = 1.4), 
light blue (α = 1.4, γ = 1.6), and green (α = 1.6, γ = 
1.8), which have another equilibrium point at 𝑥– > 0.5, 
are obtained when the fitness value of 𝐻𝐻 is less than 
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that of ℎℎ. Otherwise, if 𝐻𝐻 parents are more fit than ℎℎ 
parents, we obtain curves similar to dark blue (α = 1.4, γ 
= 1.2), maroon (α = 1.6, γ = 1.4), and gray (α = 1.8, γ 
= 1.6), which have another equilibrium point at 𝑥– < 0.5.

From the blue curve, the value of  𝑥̇ is also 0 when 𝑥 = 
0 or 𝑥 = 1. But this time, we have another intercept at 

. Thus, there are three equilibrium 
states: [a] if the entire parental population consists of only 
Huntington alleles, [b] if the entire parental population 
consists of only normal alleles, or [c] if the population 
is a composition of Huntington and normal alleles, with 
equal probabilities of 0.5. There will still be no change in 
the frequency of 𝐻 alelles throughout generations if the 
parental population consists of either only Huntington 
alleles, only normal alleles, or a mix of both alleles with 
equal probabilities of 0.5. On the other hand, the value of 
𝑥̇  is nonzero for any value of 𝑥 ∈ (0,1)\{0.5}. That is, if 
we have a mixed population (𝑥, 1 −   𝑥), where 𝑥 ∈ (0,1)\
{0.5}, the frequency of 𝐻 either increases or decreases.

The trajectory of 𝑥 in mixed populations with starting 
points 𝑥 = 0.2 (orange) and 𝑥 = 0.4 (yellow) is shown in 
Figure 10. We see that over time, 𝑥 continues to decrease 
until it converges to the equilibrium point 𝑥 = 0. On the 

with graph shown in Figure 11.

Various curves for select values of � and γ such that α > β 
and β < γ are shown in Figure 11. Observe that values of 𝑥̇  
in every curve is positive from 𝑥 = 0 up to a corresponding 
𝑥– and negative from some 𝑥– to 𝑥 = 1. Curves similar to 
blue (α = γ = 1.3), orange (α = γ = 1.6), and gray (α = 
γ = 1.9), which have another equilibrium point at 𝑥– = 
0.5, are obtained when the fitness values of types 𝐻𝐻 
and ℎℎ are equal. Curves similar to yellow (α = 0.2, γ = 
0.4), light blue (α = 0.4, γ = 0.6), and green (α = 0.6, γ 
= 0.8), which have another equilibrium point at 𝑥– < 0.5, 
are obtained when the fitness value of 𝐻𝐻 is less than 
that of ℎℎ. Otherwise, if 𝐻𝐻 parents are more fit than ℎℎ 
parents, we obtain curves similar to dark blue (α = 0.4, γ 
= 0.2), maroon (α = 0.6, γ = 0.4), and gray (α = 0.8, γ 
= 0.6), which have another equilibrium point at 𝑥– > 0.5.

There will also be three equilibrium states: [a] if the entire 
parental population consists of only Huntington alleles, 
[b] if the entire parental population consists of only 

Figure 10. Trajectories of 𝑥 with � = 1.3, � = 1, and � = 1.3.

other hand, with starting points 𝑥 = 0.6 (green) and 𝑥 = 0.8 
(maroon), we see that over time, 𝑥 continues to increase 
until it converges to the equilibrium point 𝑥 = 1 . Hence, 
the two pure strategies dominate the population, and the 
population stabilizes with either of Huntington or normal 
alleles, depending on the initial frequency of Huntington 
alleles. Small disturbances at 𝑥 = 0.5 cause the frequency 
of 𝐻 to either increase or decrease.

Illustration 6. Finally, from Theorem 1 Item 4, we assume 
α < β and β > γ, that is, 𝐻ℎ is the most fit type, we set 
α = γ = 0.7 and β = 1 as an example. This gives us the 
replicator equation:

Figure 11. Various curves for different values of � and �, with 
� = 1.

Figure 12. Trajectories of 𝑥 with � = 0.7, � = 1, and � = 0.7..
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normal alleles, or [c] if the population is a composition 
of Huntington and normal alleles, with equal probabilities 
of 0.5. There will still be no change in the frequency of 𝐻 
alleles throughout generations if the parental population 
consists of either only Huntington alleles, only normal 
alleles, or a mix of both alleles with equal probabilities of 
0.5. Similarly, the value of 𝑥̇  is nonzero for any value of 𝑥 
∈ (0,1)\{0.5}. That is, if we have a mixed population (𝑥, 
1 − 𝑥), where 𝑥 ∈ (0,1)\{0.5}, the frequency of 𝐻 either 
increases or decreases.

Figure 12 illustrates the trajectory of 𝑥 in mixed 
population. We see that over time, 𝑥 continues to increase 
until it converges to the equilibrium point 𝑥– = 0.5. On the 
other hand, with the starting points 𝑥 = 0.6 (green) and 
𝑥 = 0.8 (maroon), we see that over time, 𝑥 continues to 
decrease until it converges to the same equilibrium point 
𝑥– = 0.5. Hence, no pure strategy dominates the population, 
and the population stabilizes with the coexistence of both 
Huntington and normal alleles with equal probabilities 
of 0.5.

CONCLUSION AND 
RECOMMENDATION
In this study, we applied EGT in population genetics – 
specifically, in the case of the inheritance pattern of HD 
– which was presented as a four-player game. As presented 
by Gokhale and Traulsen, the payoff matrix of the game 
was reduced to a symmetric two-player game. Their model 
served as the payoff matrix employed to determine the 
evolutionary stable strategies of the game. 

Given some parameters, the solutions to the replicator 
equation were verified to be evolutionary stable 
strategies. From these results, we have determined when 
the population compositions for alleles 𝐻 and ℎ are 
evolutionarily stable depending on the fitness values 
of each genotype 𝐻𝐻, 𝐻ℎ, and ℎℎ. As shown in the 
illustrations, mixed populations converge to a purely 
normal composition, that is 𝑥 = 0, if normal parents will 
produce more offspring than HD parents. Consequently, 
more ℎ alleles are passed on through generations of 
offspring compared to 𝐻 alleles. The opposite applies 
and mixed populations converge to a purely Huntington 
composition, that is, 𝑥 = 1, if HD parents will produce 
more offspring than normal parents. This is because more 
𝐻 alleles are passed on through generations of offspring 
compared to ℎ alleles. Mixed populations may also 
converge to either pure composition, depending on the 
composition of the frequencies of 𝐻 and ℎ at the parental 
generation. This happens if homozygotes 𝐻𝐻 and ℎℎ are 
more fit than heterozygotes. Lastly, it is also possible that 
a mixed population converges to a composition where 

both types of genes 𝐻 and ℎ coexist. This happens if 
heterozygotes are more fit than homozygotes.

HD falls under the category of Mendelian inheritance. 
Gokhale and Traulsen’s model can also be applied to non-
Mendelian inheritance pattern. Studies on the application 
for such inheritance pattern like the one presented here 
would further show how EGT may be applied in biology. 
In addition to this, since infinite population was considered 
in this paper, potential directions include extensions of the 
research field by considering spatial structure and finite 
populations. There have already been numerous studies 
(Thomas and Pohley 1981; Nowak and May 1992; Ficici 
and Pollack 2000; Nowak and Sigmund 2004), which took 
into consideration the aforementioned, and key advances 
were produced. However, most of the analysis for finite 
populations, was limited to two-player games (Noe and 
Hammerstein 1995; Miekisz 2008). Thus, the introduction 
of various non-linear interactions such as what we did 
in this study (introducing multiplayer games) would be 
helpful in furthering the diversity and reach of EGT.
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