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Coronavirus disease 2019 (COVID-19) is a novel respiratory disease first identified in Wuhan, 
China, that is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 
To better understand the dynamics of the COVID-19 pandemic in the Philippines, we have used 
real-time mobility data to modify the DELPHI epidemiological model recently developed at the 
Massachusetts Institute of Technology (MIT) and to simulate the pandemic in Metro Manila. We 
have chosen to focus on the National Capital Region (NCR), not only because it is the nation’s 
demographic heart where over a tenth of the country’s population lives, but also because it has 
been the epidemiological epicenter of the Philippine pandemic. Our UST CoV-2 model suggests 
that the government-imposed enhanced community quarantine (ECQ) has successfully limited 
the spread of the pandemic. It is clear that the initial wave of the pandemic is flattening, though 
suppression of viral spread has been delayed by the local pandemics in the City of Manila and 
Quezon City. Our data also reveals that replacing the ECQ with a general community quarantine 
(GCQ) will increase the forecasted number of deaths in the nation’s capital unless rigorous tracing 
and testing can be implemented to prevent a second wave of the pandemic.

Mobility-guided Modeling of the COVID-19 
Pandemic in Metro Manila

INTRODUCTION
COVID-19 is a novel respiratory disease first identified 
in Wuhan, China, that is caused by SARS-CoV-2 (Guan 
et al. 2020; Xie et al. 2020; Zhu et al. 2020). With 
widespread human-to-human transmission, the virus is 
highly contagious, and the COVID-19 pandemic is now 
of global concern (Burki 2020; Paules et al. 2020). 

On 30 Jan 2020, the Department of Health of the 
Philippines (DOH) reported its first case of COVID-19 
in the country. She was a 38-year-old female Chinese 

national who had traveled to the Philippines from Wuhan 
via Hong Kong. The first case of local transmission was 
confirmed on 07 Mar 2020, with the first death due to 
local transmission reported on 11 Mar 2020. As of 21 May 
2020, there have been 13,434 confirmed cases and 846 
deaths from COVID-19 reported by the DOH throughout 
the archipelago. 

To contain the COVID-19 pandemic, the national 
government of the Philippines imposed an Enhanced 
Community Quarantine (ECQ) on the country’s National 
Capital Region (NCR), also known as Metro Manila, on 
15 Mar 2020, which was extended to the entire island *Corresponding Author: naustria@providence.edu
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of Luzon and its 55 million inhabitants the following 
day. The ECQ imposed a strict stay-at-home order, 
banned all public gatherings, suspended all mass public 
transportation, and closed all non-essential business 
establishments. On 24 Apr 2020, the ECQ was extended 
in the NCR and several other provinces and municipalities 
that were considered high-risk for COVID-19. On 15 May 
2020, Metro Manila and several surrounding regions were 
placed on a modified Enhanced Community Quarantine 
(MECQ) that is to stay in place until 31 May 2020. At that 
time, if conditions permit, the NCR is expected to move 
to a more relaxed GCQ. 

Numerous mathematical models have been developed to 
understand the global COVID-19 pandemic (Adam 2020; 
Currie et al. 2020; Holmdahl and Buckee 2020). To better 
understand the dynamics of the local pandemic in the 
Philippines, we have used real-time mobility data to adapt 
the DELPHI (Differential Equations Leads to Predictions 
of Hospitalizations and Infections) epidemiological model 
recently developed at MIT (Bertsimas et al. 2020) to 
the pandemic in Metro Manila. The DELPHI model is a 
standard SEIR (susceptible-exposed-infected-recovered) 
model with additional features, including under-detection 
and differentiated government intervention, that are 
particularly helpful for modeling this current pandemic. 
Finally, it uses a machine-learning algorithm to determine 
the best-fit epidemiological parameters from the historical 
data of death counts and detected cases. The current SEIR 
models for the COVID-19 pandemic in the Philippines do 
not have these enhancements (David et al. 2020).

We have chosen to focus on the NCR, not only because it 
is the nation’s demographic heart where over a tenth of the 
country’s population lives, but also because it has been, 
by far, the epidemiological epicenter of the Philippine 
pandemic: As of 21 May 2020, 8,659 cases (64% of the 
country’s total) and 621 deaths (73%) have been reported 
in Metro Manila. 

Our UST CoV-2 mobility-guided enhanced SEIR model 
suggests that the lockdown measures of the ECQ have 
successfully limited the spread of the pandemic in the 
NCR. It is clear that the initial wave of the pandemic is 
flattening, although suppression of viral spread has been 
delayed by the local pandemics in Quezon City and the 
City of Manila. Our model also reveals that releasing 
these measures will increase the forecasted number of 
deaths in the nation’s capital unless rigorous tracing and 
testing can be implemented to prevent a second wave 
of the pandemic.

MODELING METHODS
The DELPHI epidemiological model recently developed 
at MIT is a compartmental model that is based on the 
successful SEIR models that have been used to simulate 
numerous past epidemics (Bertsimas et al. 2020). However, 
it also accounts for the underdetection of cases, which is 
particularly important when a community is unable to 
adequately test for the disease during the pandemic, and 
for possible societal-governmental responses to contain the 
spread of the contagion. Both enhancements are essential 
for robust modeling of the current COVID-19 pandemic.

To model the underdetection of cases, the DELPHI 
model separates the target population into 11 possible 
categories during the pandemic: Susceptible (S), 
Exposed (E), Infected (I), Undetected Recovered (AR), 
Undetected Dead (AD), Detected Hospitalized Recovered 
(DHR), Detected Hospitalized Dead (DHD), Detected 
Quarantined Recovered (DQR), Detected Quarantined 
Dead (DQD), Recovered (R), and Dead (D). The novel 
buckets not included in classic SEIR models allow the 
model to simulate populations at the outset of a pandemic 
where testing is being ramped up. The model also includes 
a parameter (pd) for the percentage of detected cases of 
infection detected that allows it to incorporate varying 
testing capacities for the target population. A list of the 
differential equations that drive the DELPHI model – as 
well as its initial conditions, parameters, and variables – 
are included in the supplemental information.

To model the societal-government response, the DELPHI 
model includes a multiplier for the rate of infection in the 
form of a smooth parametric nonlinear arctan function:

                    
(1)

Parameters a and b can be varied to model a wide range of 
policies – including social distancing, stay-at-home policies, 
and lockdowns (a > 0 and b > 0).

Finally, in the original DELPHI model, key parameters 
for COVID-19 were fixed using a metanalysis conducted 
by the MIT COVIDAnalytics team and epidemiological 
parameters were fitted to historical death counts and 
detected cases using a machine learning algorithm that best 
fits these parameters to the observed data.

To simulate the COVID-19 pandemic in Metro Manila, we 
modified the DELPHI model in four ways:

First, real-time mobility data obtained from Apple, Inc. for 
driving, walking, and transit on 21 May 2020 (https://www.
apple.com/covid19/mobility) revealed that the lockdown 
in Metro Manila that began on 15 Mar 2020, resulted in 
a dramatic and near-immediate drop in mobility over the 
course of several days. A graph of the changes in mobility in 
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the NCR obtained by first averaging the three mobility data 
sets provided by Apple, Inc. – driving, walking, and transit 
– for each date, and then calculating a seven-day running 
average of these means is shown in Appendix Figure I. 
Therefore, to better simulate the initial period of the local 
pandemic in Metro Manila, we replaced the original smooth 
parametric nonlinear arctan function adopted by the MIT 
team with an almost step-like function that would be fitted 
to the historical COVID-19 pandemic data from the DOH 
for the NCR using a modified machine learning algorithm.

Our replacement is a function γ(t), which can change fast 
within a few days between constant values. The value 
of γ(t) is 1 at the beginning of the COVID-19 outbreak. 
Two days before the optimized median day of action ta the 
function γ(t) starts dropping rapidly to the optimized level 
of action La. This reduces to the effective reproduction 
number:

where α is the infection rate and rd is the detection rate that 
moves an individual out of the I compartment, as expected 
during community quarantine. The level of action La is 
reached two days after ta. During this four-day transition, 
the γ(t) function connects the two constant levels with a 
cubic spline:

(2)

for ta-t1 < t < ta+t1 with the transition time t1 = 2 days. 
The γ(t) function is equal to La during the community 
quarantine. In our view, this novel multiplier developed 
with mobility data in mind allows us to better simulate the 
dramatic lowering of the rate of infection that is expected 
during the initial days of the ECQ because of the dramatic 
decrease in mobility. Human mobility proxies have been 
used in the past to understand the spread of infectious 
diseases, including COVID-19 (Tizzoni et al. 2014).

Next, the Apple Mobility data revealed that the mobility 
of communities in Europe that were put into relatively 
lenient lockdowns recovered linearly from the minimum 
achieved immediately after quarantines were established. 
Three representative curves from Austria, Germany, and 
Norway (obtained as above) by first averaging the three 
mobility data sets provided by Apple, Inc. – driving, 
walking, and transit – for each date and then calculating 
a seven-day running average of these means are shown 
in Appendix Figure II. It is likely that the shape of this 
recovery reflects both the gradual easing of the lockdowns 
and the hesitant movements of a quarantined population 
that remains wary of the disease. We, therefore, chose to 
model the lifting of the community quarantine in Metro 
Manila with a smooth cubic spline interpolation function 

that allows us to transition the multiplier of the infection 
rate from the lockdown level, La, to a higher level, between 
La and 1:

   
(3)

for tb ‒ t2 < t < tb + t2. We considered two scenarios: a 
smooth increase with a transition time t2 of 7 days where 
tb corresponds to 07 Jun 2020, and a very smooth increase 
with a transition time t2 of 15 days where tb corresponds 
to 15 Jun 2020. The γ(t) function is equal to the constant 
La + σ (1 ‒ La) after this transition. In order to study the 
effect of different σ values, σ was increased from 0 to 1 in 
steps of 0.1. A value of 0 for σ means that γ(t) stays at the 
level La associated with the original lockdown, whereas 
a value of 1 for σ means that γ(t) returns to the initial 
value 1. That is, the value of σ quantifies the effect of the 
lifting of the lockdown, which depends on how much the 
mobility of the people changes.  We eventually chose to 
focus our analysis on a two-week period of transition (t2 
is 7 days) from the ECQ to GCQ because we believe that 
it would take two weeks for people to adjust to the new 
more-relaxed quarantine.

Third, we replaced the original machine learning algorithm 
in the DELPHI model. The variables of the modified 
model used in this study were optimized by minimizing 
a function f(α, ta, La, rdth, pdth, k1, k2) of initially seven 
variables while respecting the upper and lower bounds 
specified for them. The variables are the infection rate α, 
the median day of action ta, the level of action La, the rate 
of death rdth, the probability of mortality pdth, as well as 
the internal parameters k1 and k2 for optimizing the initial 
conditions (see Appendices section). This function is a 
measure of the distance between the predictions of the 
DELPHI model and the historical data of death counts 
and detected cases. The function was minimized with 
the aid of the dual_annealing algorithm of the Python 
module SciPy, which tries to find the global minimum 
of a function with upper and lower bounds specified for 
the variables. This algorithm performed best among the 
minimization algorithms we tested. To reduce the number 
of variables that need to be optimized from seven to six, 
we fixed the infection rate α to 2.2rd. This corresponds to 
a basic reproduction number R0 = α/rd of 2.2, which is a 
published estimate for the R0 for SARS-CoV-2 (Li et al. 
2020). The value of α was fixed by specifying upper (2.2rd 
+ 0.000000001/d) and lower (2.2rd ‒ 0.000000001/d) 
bounds, which are just slightly above and below 2.2rd. The 
software accompanying this paper can be found on Github.
com with the following DOI: 10.5281/zenodo.3953074. 

Finally, we specified several of the epidemiological 
parameters of the original DELPHI model to better reflect 
the local pandemic in Metro Manila. The values for the 
clinical and epidemiological parameters used in our model 
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Table 1. Parameters for the UST CoV-2 model for the pandemic in 
Metro Manila.

Model parameter Value Source

Median time to leave 
incubation 5 d Bertsimas et al. (2020)

Median time to 
recovery
without hospitalization

10 d Bertsimas et al. (2020)

Median time to 
detection 2 d Bertsimas et al. (2020)

Median time to 
recovery in hospital 15 d Bertsimas et al. (2020)

Ratio of recoveries to 
deaths 6:1 worldometers.info

pd for the Philippines
(% infected cases 
detected)

0.02 Bommer and Vollmer 
(2020)

ph for Metro Manila
(% detected cases 
hospitalized)

0.10 doh.gov.ph/
covid19tracker

Population of Metro 
Manila 13,923,452 worldpopulationreview.

com

are displayed in Table 1. Additional parameter values and 
the initial conditions for our modeling efforts are provided 
in the Appendices section. 

All historical data for the pandemic in the NCR was 
obtained from the COVID-19 Tracker website maintained 
by the DOH (https://ncovtracker.doh.gov.ph/). We have 
noticed that this historical data set is constantly being 
revised to reflect the results of ongoing validation. Our 
model used the confirmed values that were available on 21 
May 2020 to generate the results described in this paper. 
Data from New York City was obtained from the website 
of the New York City Department of Health (https://
www1.nyc.gov/site/doh/covid/covid-19-data.page).

RESULTS AND DISCUSSION

Impact of the ECQ in Metro Manila
There is evidence that social distancing practices and 
community-wide lockdowns have been effective at blunting 
the COVID-19 pandemic and preventing health systems 
from being overwhelmed in different countries around the 
world (Flaxman et al. 2020; Haushofer and Metcalf 2020; 
Hsiang et al. 2020). As shown in Figure 1, our UST CoV-
2 model suggests that the government-imposed ECQ has 
also successfully limited the impact of the pandemic in 
Metro Manila by significantly lowering the total number 
of COVID-19 cases and the total number of deaths.

As a point of comparison, Metro Manila and New 
York City – two metropolitan areas with comparable 

Figure 1. Modeling the impact of the ECQ on the COVID-19 Pandemic in Metro Manila. Forecasted estimates 
of total COVID-19 cases and total deaths for NCR without a lockdown and with the ECQ compared 
to the data provided by the DOH.
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populations – recorded their first deaths from community 
spread of COVID-19 on 11 Mar 2020 and 13 Mar 2020, 
respectively. However, Metro Manila entered lockdown 
on 15 Mar 2020, while New York City waited one more 
week to enter its lockdown on 20 Mar 2020. As of 21 
May 2020, Metro Manila reported 621 total deaths from 
COVID-19 while New York City confirmed 16,232 total 
deaths. It appears that the early implementation of the 
ECQ has been able to spare the lives of thousands of 
residents of the NCR.

Our results also suggest that the first wave of the pandemic 
is receding. As shown in Figure 2, the number of forecasted 
active cases peaked in early May and is gradually declining. 
Currently, there is no evidence for a second wave of the 
pandemic. Note that we decided not to compare this 
modeled curve of forecasted active cases with the data 
for active cases provided by the DOH of the Philippines 
because we believe that the number of recovered cases 
is under-reported in this data set amid delays in the 
validation process established by the DOH: there are 
cases of COVID-19 patients who were listed as having 
mild symptoms whose health status remains unknown 
two months after their initial diagnosis. This is medically 
inexplicable, and we believe that it is better explained by 
gaps in the data collection during this time of the pandemic.

Though the curve for the pandemic in the NCR is flattening 
gradually, the flattening is not dramatic. In fact, it is clear 
that the ECQ is struggling to suppress the pandemic, i.e. 

to drive the number of infected cases down to zero. At 
this rate, the model predicts that the total number of cases 
in Metro Manila will continue to gradually increase and 
will not plateau for many months, although the forecasted 
number of active cases will also be decreasing. If the 
current quarantine measures are maintained, the forecasted 
number of active cases of COVID-19 will not fall below 
1,000 cases until early-September. 

To uncover possible reasons for this less-than-dramatic 
slowing of viral spread, we modeled the local pandemics 
in the five cities within Metro Manila that have the largest 
numbers of cases of COVID-19. These are Quezon City 
and the cities of Makati, Mandaluyong, Manila, and 
Parañaque. These five cities together represent over half 
of the total number of COVID-19 cases in the NCR.

Our modeling reveals that the efficacy of efforts to 
suppress the pandemic has varied widely throughout 
the NCR. As shown in Figure 3, cities like Makati, 
Mandaluyong, and Parañaque have been more successful 
at suppressing the community spread of COVID-19 than 
Manila or Quezon City. If the current quarantine measures 
are maintained, the total number of cases is forecasted to 
plateau by mid-July in Mandaluyong, by early August in 
Makati, and by September in Parañaque. However, the 
same cannot be said for the latter two cities where the total 
number of cases is forecasted to gradually keep increasing 
for many months, although the forecasted number of active 
cases will also be decreasing.

Figure 2. Modeling the COVID-19 Pandemic under ECQ in Metro Manila. Forecasted estimates of total COVID-19 
cases, total active cases, and total deaths for NCR with the ECQ compared to the data provided by the DOH.
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It is not clear why the ECQ has not been as effective in 
both the City of Manila and Quezon City as it has been in 
their neighboring municipalities. Although Manila is the 
densest city in the world, Quezon City is not the second 
densest in the NCR. Thus, the different effects of the ECQ 
are unlikely to be explained by appealing to population 
density alone. Nonetheless, both these urban areas have 
experienced several-fold higher infections than the other 
component cities in the capital region. Thus, it is not 
unreasonable to posit that the dynamics of the COVID-19 
pandemic in Metro Manila are being driven by both local 
pandemics. It suggests that public health authorities should 
increase their efforts to contain the pandemic in the NCR 
in these two cities.

Impact of Easing the ECQ in Metro Manila
To model the impact of replacing the ECQ with the 
GCQ, we reran our model assuming that the ECQ would 
be eased on 01 Jun 2020 and that it would take 2 weeks 
for people to adjust to the new more-relaxed quarantine. 
As explained above, we had observed that the mobilities 
of communities released from lockdowns in Europe 
recovered in a linear fashion. Therefore, we chose to 
model the easing of the ECQ in Metro Manila with a 
smooth cubic spline interpolation function that would 
increase the modeled infection rate at a relatively linear 
rate once the strict community lockdown is lifted. Since 
the proposed GCQ (http://www.covid19.gov.ph/ecq-gcq-
guidelines/) will seek to limit the mobility of the relatively 
young (< 21 years old) and the relatively old (> 60 years 
old), two populations who together constitute about half 

of the number of the Filipino people nationwide (https://
www.populationpyramid.net/Philippines/2019/), we 
interrogated the effect on the pandemic of increasing 
the infection rate by half of the amount that it decreased 
during the ECQ, i.e. a post-ECQ recovery rate of 50% in 
the infection rate that would mirror the expected post-ECQ 
recovery rate of 50% in the mobility of the residents of 
the NCR.

As shown in Figure 4, it is clear that replacing the ECQ 
with a GCQ will increase the forecasted number of 
infected cases and deaths in Metro Manila. If the post-
ECQ infection rate is allowed to recover by half of the 
amount it decreased during the lockdown over a two-week 
period, then our model predicts that the total number of 
infected cases of COVID-19 will grow from 15,952 to 
35,235 and that the total number of deaths will rise from 
1,356 to 2,415 by 01 Aug 2020.

It is important to emphasize that these increases in both 
total cases and deaths are not inevitable. They can be offset 
with a rigorous tracking, testing, and tracing program 
that seeks to limit community spread by breaking chains 
of viral transmission (Cheng et al. 2020; Hellewell et al. 
2020). Given the observation that typically, only 20% of 
a population contributes to at least 80% of the potential 
to transmit infectious disease (Woolhouse et al. 1997; 
Endo et al. 2020), we recommend that tracking, testing, 
and tracing programs in Metro Manila focus their efforts 
on limiting the impact of superspreading events that are 
associated with both explosive growth early in an outbreak 
and sustained transmission in later stages (Frieden and 
Lee 2020).

Figure 3. Modeling the COVID-19 Pandemic under ECQ in individual component cities of Metro Manila. Forecasted estimates of total 
cases, total active cases, and total deaths for NCR and the five component cities with the highest recorded cases of COVID-19 
with the ECQ compared to the data provided by the DOH.
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How much testing and tracing capacity will be needed 
in Metro Manila to keep the pandemic at bay? A team 
of scholars at the Edmond J. Safra Center at Harvard 
University has recently published recommendations for 
communities of different sizes and at different stages in 
controlling their pandemics (Allen et al. 2020). They 
propose that every municipality with a moderate infection 
rate, i.e. with less than 1% prevalence of the active virus 
in its population – for the most part, the NCR appears 
to fulfill this criterion – should hire sixty teams of five 
tracers for every death per day that they observe in their 
community, and maintain a testing capacity of 2,500 tests 
for every death per day. 

On 22 May 2020, the seven-day running average of deaths 
per day recorded in Metro Manila was six deaths per day. 
This means that at this stage of the pandemic, according 
to the recommendations of the Harvard team, the NCR 
would need a testing capacity of 15,000 tests per day and 
1,800 contact tracers working in call centers scattered 
throughout the region to control its local pandemic. 
Geographic distribution of this testing and contact tracing 
capacity should correspond to the severity of the local 
pandemics in each of the cities of Metro Manila, with a 
particular focus on the City of Manila and Quezon City.  

In sum, although they were necessary to squash the initial 
wave of the COVID-19 pandemic, community-wide 
lockdowns are not sustainable in the long run because of 

Figure 4. Modeling the impact of the GCQ in Metro Manila from 01 Jun 2020. Forecasted estimates of total 
COVID-19 cases, total active cases, and total deaths for NCR for the ECQ and GCQ compared to 
the data provided by the DOH.

their grave socio-economic impact, especially on the lives 
of the poor (Nicola et al. 2020). Our modeling suggests 
that the government-imposed ECQ has successfully 
limited the spread of the pandemic in Metro Manila. It 
has given the Philippine government precious time to 
ramp up the social and medical infrastructure that will be 
needed to mitigate and contain the virus for the foreseeable 
future until a vaccine is developed. Resources must now 
be invested to increase testing and contact tracing capacity 
to prevent future outbreaks of COVID-19 and to increase 
the capacity of the Philippine health care system, including 
sufficient supplies of PPE so that it will be able to deal with 
a possible second wave of the pandemic later this year. 

Limitations of our Study
Our study has two primary limitations. First, we did 
not include the effect of modifying the ECQ in Metro 
Manila on 15 May 2020. If this change in the lockdown 
has any effects on the local pandemics, we would not 
expect these to manifest themselves until 14 days after 
the modification, which is beyond the scope of this 
present study that was completed on 21 May 2020. 
Second, our model is only as good as the data set upon 
which it relies. Since there are credible news reports 
in the Philippines that suggest that the DOH data set is 
incomplete because of a delay in the validation process 
(Sabillo 2020), it is not clear if the unavailable data 
would alter our modeling results.
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APPENDICES

# Optimized Variables of the DELPHI Model
α # Infection rate was fixed to 2.2 rd. That is, a value of 2.2 was assumed for the basic reproduction number 

R0 = α/rd. This was done to reduce the number of parameters that need to be optimized.
ta # Median day of action
La # Level of action (replaces the rate of action rs in the original DELPHI model)
rdth # Rate of death
pdth # Probability of mortality
k1 # Internal parameter 1
k2 # Internal parameter 2

# Bounds for the Variables
α Bound within the very narrow interval [2.2 rd ‒ 0.000000001/days, 2.2 rd + 0.000000001/days]
ta Bound within the interval [0.01, 0.9]
La Bound within the interval [0.01, 0.9]
rdth Bound within the interval [0.01, 0.5]
pdth Bound within the interval [0.01, 0.25]
k1 Bound within the interval [0.1, 10.0]
k2 Bound within the interval [0.1, 10.0]

# Fixed Rates
ri = ln(2) / 5 days # Rate of infection leaving incubation phase
rd = ln(2) / 2 days # Rate of detection
rri = ln(2) / 10 days # Rate of recovery not under hospitalization
rrh = ln(2) / 15 days # Rate of recovery under hospitalization
rrv = ln(2) / 10 days # Rate of recovery under ventilation

# Fixed Probabilities
pv = 0.25 # Probability of ventilation
pd = 0.02 # Probability of infection case detection
ph = 0.1 # Probability of detected cases hospitalization

# Equations on Main Variables
dS(t)/dt = ‒α γ(t) S(t) I(t)/N
dE(t)/dt = α γ(t) S(t) I(t)/N ‒ ri E(t)
dI(t)/dt = ri E(t) ‒ rd I(t)
dAR(t)/dt = rd (1 ‒ pdth) (1 ‒ pd) I(t) ‒ rri AR(t)
dDHR(t)/dt = rd (1 ‒ pdth) pd ph I(t) ‒ rrh DHR(t)
dDQR(t)/dt = rd (1 ‒ pdth) pd (1 ‒ ph) I(t) ‒ rri DQR(t)
dAD(t)/dt = rd pdth (1 ‒ pd) I(t) ‒ rdth AD(t)
dDHD(t)/dt = rd pdth pd ph I(t) ‒ rdth DHD(t)
dDQD(t)/dt = rd pdth pd (1 ‒ ph) I(t) ‒ rdth DQD(t)
dR(t)/dt = rri (AR(t) + DQR(t)) + rrh DHR(t)
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dD(t)/dt = rdth (AD(t) + DQD(t) + DHD(t))

# Helper States
dTH(t)/dt = rd pd ph I(t)
dDVR(t)/dt = rd (1 ‒ pdth) pd ph pv I(t) ‒ rrv DVR(t)
dDVD(t)/dt = rd pdth pd ph pv I(t) ‒ rdth DVD(t)
dDD(t)/dt = rdth (DHD(t) + DQD(t))
dDT(t)/dt = rd pd I(t)

# These coupled ordinary differential equations were solved/integrated from 15 Mar 2020 (t = 0 days), the first day 
with more than 100 total cases, up to 31 Aug 2020. 

# Initial Conditions for Modeling
ND = d(0) # Total no. of deaths d on 15 Mar 2020 (from input data)
NR = 5 ND # Estimate for the total no. of recovered people on 15 Mar 2020
NI = c(0) # Total no. of cases c on 15 Mar 2020 (from input data)
NC = NI ‒ NR ‒ ND # No. of people who are infected and contagious on 15 Mar 2020
S0 = N ‒ NC/pd ‒ NC (k1 + k2)/pd ‒ NR/pd ‒ ND/pd

E0 = NC k1/pd

I0 = NC k2/pd

AR0 = (NC/pd ‒ NC) (1 ‒ pdth)
DHR0 = NC ph (1 ‒ pdth)
DQR0 = NC (1 ‒ ph) (1 ‒ pdth)
AD0 = (NC/pd ‒ NC) pdth

DHD0 = NC ph pdth

DQD0 = NC (1 ‒ ph) pdth

R0 = NR/pd

D0 = ND/pd

TH0 = NC ph

DVR0 = NC ph pv (1 ‒ pdth)
DVD0 = NC ph pv pdth

DD0 = ND

DT0 = NI

# Function That Was Minimized
f(α, ta, La, rdth, pdth, k1, k2) = Sum((j + 1) (DT(j Δt) ‒ c(j Δt))2

 + ( j + 1) b2 (DD(j Δt) ‒ d(j Δt))2)
The summation is from j = 0 to n.

Δt = 1 day
nD = d(n Δt) # Total no. of deaths d on the last day t = n Δt available in the input data file
nI = c(n Δt) # Total no. of cases c on the last day t = n Δt available in the input data file
b = nI/(3 max(nD, 10)) # Balance: ratio of fitting between cases and deaths 

The software accompanying this paper can be found on Github.com with the following DOI: 10.5281/zenodo.395307
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Appendix Figure I. Mobility changes in NCR before and after their pandemic lockdowns. The graph was obtained by 
first averaging the three mobility data sets provided by Apple, Inc. – driving, walking, and transit – for each 
date and the calculating a seven-day running average of these means.

Appendix Figure II. Mobility changes in Austria, Germany, and Norway before and after the imposition of the ECQ. The 
graph was obtained by first averaging the three mobility data sets provided by Apple, Inc. – driving, walking, 
and transit – for each date and the calculating a seven-day running average of these means.
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