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Based on electrical measurements from electrodes placed around the boundary of a body, 
electrical impedance tomography (EIT) is an imaging procedure that recovers the spatial  
distribution of the conductivities in the interior of a body. Recent studies have shown 
promising results in reconstructing EIT images using heuristic algorithms. This work presents 
a study of the applicability of six heuristic algorithms – firefly algorithm (FA), novel bat 
algorithm (NBA), genetic algorithm with new multi-parent crossover (GA-MPC), success 
history-based adaptive differential evolution with linear population size reduction with semi-
parameter adaptation hybrid with covariance matrix adaptation evolutionary strategy 
(LSHADE-SPACMA), ensemble sinusoidal differential covariance matrix adaptation 
(LSHADE-cnEpSin), and effective butterfly optimizer with covariance matrix adapted retreat 
phase (EBOwithCMAR) – for the EIT image reconstruction problem. These algorithms have 
never been employed to solve the EIT inverse problem. Series of numerical tests were carried 
out to compare the performance of the selected algorithms. 

Keywords: electrical impedance tomography, heuristic algorithms, inverse problem 

INTRODUCTION 

EIT is a non-invasive imaging technique in which the conductivity distribution within a body is reconstructed given 
measurements of electrical current and voltage around its boundary. Most imaging modalities, such as computerized 
tomography scan and magnetic resonance imaging scan, make use of ionizing radiation which can adversely affect 
human health if not properly used or contained (Mettler 2012). This concern led to efforts to develop radiation-free 
tomographic procedures, one of which is the EIT.  

Image quality is a constant subject in EIT research, as EIT images are known to have poor spatial resolution due to 
the technique’s soft-field property and a limited number of independent measurements (Miao et al. 2014). Image 
reconstruction via EIT is also an ill-posed problem (Holder 2000). Nevertheless, due to its low cost, portability, and 
non-invasive property, EIT is safe for long-term continuous monitoring – a trait that is lacking in most of the currently 
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available imaging technologies. In addition, different regularization techniques have been developed over the past 
years to weaken its ill-posedness, resulting to more accurate and stable reconstructions. 

EIT has wide-ranging applications in biomedical monitoring, geophysics, and industrial processes. For instance, it is 
a potential tool for the detection of breast cancer (Zuo and Guo 2003); imaging of gastric emptying (Mangnall et al. 
2003); and monitoring of pulmonary, brain, and cardiovascular functions (Isaacson et al. 2003). It can also be used to 
obtain information about rock porosity and fracture formation (Parker 1984), detect leaks from buried pipes (Jordana 
et al. 2001), and nondestructively test for material defects (Eggleston et al. 1990).   

A typical EIT system consists of a set of electrodes attached around the boundary of a body, through which low-
frequency alternating currents are injected. The entire EIT operation can be divided into two parts: the forward 
problem and the inverse problem. The forward model involves the calculation of the resulting voltages at the boundary 
of a body after electric currents are injected. In this paper, the forward problem is solved using the finite element (FE) 
method, considering the complete electrode model, which is currently the most accurate for impedance tomography 
(Somersalo et al. 1992). On the other hand, the inverse problem, also known as the reconstruction problem, involves 
the recovery of the conductivity distribution within a body using boundary voltage data. Yorkey et al. (1987) compared 
several deterministic algorithms in solving the inverse EIT problem. They have shown that the modified Newton-
Raphson method can be an effective reconstruction algorithm. Recent studies have proposed the use of heuristic 
approaches to solve the inverse problem. In the study of Rashid et al. (2010), differential evolution (DE) algorithm 
has been shown to recover the geometry of the inclusions of a circular domain with improved results. In the study of 
Ribeiro et al. (2014), a non-blind search is used to generate the first set of the population for GA and it obtained 
reasonable reconstruction of one object in a circular domain after a hundred iterations. Heuristic algorithms are capable 
of converging towards the global minimum, given sufficient computation time and an appropriate choice of 
parameters. They are also very flexible and, therefore, are less restricted to certain forms of constraints (Maringer 
2005). Furthermore, these methods are not dependent on the initial guess and the gradient of the cost functional. There 
are several works on the use of heuristic algorithms in solving the inverse EIT problem. Popular heuristic optimization 
methods like genetic algorithms (Mendoza and Lope 2012; Feitosa et al. 2014b; Barbosa et al. 2017), DE (Li et al. 
2003; Barbosa et al. 2018), particle swarm optimization (Feitosa et al. 2014a), and simulated annealing (Martins et 
al. 2012; Tavares et al. 2012) were used to solve the image reconstruction problem in EIT. A book chapter discussing 
the implementation of several evolutionary and bioinspired algorithms on the EIT image reconstruction problem can 
be found in the study of dos Santos et al. (2018). 

The goal of this study is to present a comparative analysis of six heuristic algorithms – FA, NBA, GA-MPC, LSHADE-
SPACMA, LSHADE-cnEpSin, and EBOwithCMAR – for the EIT image reconstruction problem. Comparative 
analysis of the above-mentioned algorithms is carried out in terms of the accuracy and precision of the produced 
estimates, and the average cost of the said estimates for the case where the conductivity distribution of the body is 
piecewise constant. Such an assumption arises, for instance, in medical imaging since various tissues in the body have 
contrasting conductivities with discontinuities at the boundaries of organs or masses (Mendoza and Keeling 2016). 
The algorithms are chosen in a way that a comparison between a standard heuristic algorithm (FA), improvements of 
some popular heuristic algorithms (NBA, GA-MPC), and combinations of two or more algorithms and the more recent 
ones (LSHADE-SPACMA, LSHADE-cnEpSin, EBOwithCMAR) is done.  

This paper is organized as follows. Section 2 includes a brief overview of the forward and inverse problems. In Section 
3, the proposed heuristic algorithms for the solution of the inverse problem are explained. The methodology used to 
conduct numerical simulations and their results are then discussed in Section 4. Finally, Section 5 draws conclusions 
about the results obtained and includes possible future works.  
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MATHEMATICAL FORMULATION OF THE EIT PROBLEM 

Forward Problem 
Consider a bounded simply connected domain Ω ⊂  ℝ2 with a smooth boundary 𝜕𝜕Ω. In the low-frequency regime 
under consideration in EIT experiments, the electromagnetic field satisfies the quasi-static Maxwell equations where 
the time derivative is neglected (Cheney et al. 1999; Borcea 2011). The governing (elliptic) equation of EIT is given 
in Ω by: 

𝛻𝛻 •  (𝜎𝜎 𝛻𝛻𝛻𝛻)  =  0 (1) 

 where 𝜎𝜎 ∶  Ω →  ℝ is the conductivity distribution and 𝛻𝛻 ∶  Ω →  ℝ is the potential function in the body (Calderón 
1980). Moreover, assume that 𝜎𝜎 is piecewise constant, that is, 𝜎𝜎(𝑥𝑥) = ∑ σ𝑖𝑖𝜒𝜒𝑖𝑖(𝒙𝒙), 𝒙𝒙 ∈ Ω𝑛𝑛

𝑖𝑖=𝑜𝑜 , where 𝜎𝜎0 is the 
background conductivity, 𝜒𝜒0(𝒙𝒙) is the characteristic function of the background domain Ω0 = Ω\⋃ Ω𝑖𝑖, 𝑛𝑛𝑛𝑛

𝑖𝑖=1  

corresponds to the number of (possible) inclusions Ω𝑖𝑖, (𝑖𝑖 = 1, . . .  , 𝑛𝑛) in Ω, 𝜒𝜒𝑖𝑖(𝒙𝒙) = {1, 𝒙𝒙 ∈ Ω𝑖𝑖,
0, 𝒙𝒙 ∉ Ω𝑖𝑖, and 𝜎𝜎𝑖𝑖 is the 

conductivity of the 𝑖𝑖𝑡𝑡ℎ inclusion Ω𝑖𝑖 with 𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝜎𝜎𝑖𝑖 ≤ 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚, 𝒙𝒙 ∈ Ω,∀ 𝑖𝑖 = 1, . . . , 𝑛𝑛 for some constants 0 <
 𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 <  +∞. This is the case, for example, in geophysics and medical imaging where the body under 
investigation could be divided into different regions. 

There are three known mathematical models for the EIT forward problem – namely. the continuum model, the point 
electrode model, and the complete electrode model (CEM) (Borcea 2011). This work considers the CEM because it 
is accordingly the most accurate mathematical forward model for real-life EIT (Somersalo et al. 1992). In CEM, a 
finite number of electrodes denoted by {𝑒𝑒ℓ}ℓ=1

𝐿𝐿 ⊂ 𝜕𝜕Ω is attached to the boundary on which the current patterns 𝐼𝐼 =
(𝐼𝐼1, . . . , 𝐼𝐼𝐿𝐿)𝘛𝘛 ∈  ℝ𝐿𝐿 are injected. Resulting boundary potentials 𝑈𝑈 = (𝑈𝑈1, . . . , 𝑈𝑈𝐿𝐿)𝘛𝘛 ∈  ℝ𝐿𝐿 are measured. The electrode 
contact impedance, denoted by Z = (𝑧𝑧1, . . . , 𝑧𝑧𝐿𝐿)𝘛𝘛 ∈  ℝ𝐿𝐿, is the effect of a thin and highly resistive layer formed at the 
electrode-object interface during electrode measurements (Somersalo et al. 1992) and it is assumed to satisfy 𝑧𝑧ℓ >
𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛, ∀ℓ = 1, 2, . . . , 𝐿𝐿, where 𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 is a positive constant. Using the CEM to model the electrodes, they are assumed 
to be of finite length and are perfect conductors, which results in voltage measurements on these electrodes to be 
constant. This contact impedance tends to be high for the frequencies used in EIT; thus, the voltage drop across the 
impedance layer is large. Ignoring this voltage drop introduces a large modeling error, which results in reconstruction 
errors. Accounting the voltage drop caused by the contact impedance, we have a Robin-type boundary condition. 

Furthermore, assuming that the current flowing on each electrode is equal to the current injected and that there is no 
current flow on the parts of the boundary where there is no electrode, we have: 

𝛻𝛻 + 𝑧𝑧ℓ𝜎𝜎
𝜕𝜕𝛻𝛻
𝜕𝜕�⃗�𝑛 = 𝑈𝑈ℓ,         𝑜𝑜𝑛𝑛 𝑒𝑒ℓ , ℓ = 1, 2, . . . , 𝐿𝐿. (2) 

∫𝜎𝜎 𝜕𝜕𝛻𝛻
𝜕𝜕�⃗�𝑛  𝑑𝑑𝑑𝑑

𝑒𝑒ℓ

=  𝐼𝐼ℓ,               ℓ = 1, 2, . . . , 𝐿𝐿, (3) 

𝜎𝜎 𝜕𝜕𝛻𝛻
𝜕𝜕�⃗�𝑛  =  0,                𝑜𝑜𝑛𝑛   𝜕𝜕Ω\⋃ 𝑒𝑒ℓ.

𝐿𝐿

ℓ=1
 (4) 

Equations 1−4 constitute the CEM for EIT. Let us introduce the space ℝ⋄
𝐿𝐿  ∶= {𝑊𝑊 ∈ ℝ𝐿𝐿|∑ 𝑊𝑊ℓ

𝐿𝐿
ℓ=1 = 0}. The CEM 

forward problem is formulated as follows: find potentials (𝛻𝛻, 𝑈𝑈) ∈ 𝐻𝐻 ∶= 𝐻𝐻1(Ω)⊕  ℝ⋄
𝐿𝐿 upon injecting current pattern 

𝐼𝐼 ∈ ℝ𝐿𝐿 on the boundary of a body Ω with known conductivity distribution 𝜎𝜎 in Ω and electrode contact impedance 
𝑍𝑍 ∈ ℝ𝐿𝐿. The variational formulation of the CEM is given by (Somersalo et al. 1992) 

∫𝜎𝜎∇𝛻𝛻 ∙ ∇𝑣𝑣 𝑑𝑑𝒙𝒙
Ω

+ ∑ ∫ 1
𝑧𝑧ℓ𝑒𝑒ℓ

(𝛻𝛻 − 𝑈𝑈ℓ)(𝑣𝑣 − 𝑉𝑉ℓ) 𝑑𝑑𝑑𝑑
𝐿𝐿

ℓ=1
= ∑𝐼𝐼ℓ𝑉𝑉ℓ

𝐿𝐿

ℓ=1
, (5) 
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for any test functions (𝑣𝑣, 𝑉𝑉) ∈ 𝐻𝐻. The existence and uniqueness of a solution (𝑢𝑢,𝑈𝑈) ∈ 𝐻𝐻 have been proved using the 
Lax-Milgram Milgram theorem (Somersalo et al. 1992). The conservation of charge  ∑ 𝐼𝐼ℓ𝐿𝐿

ℓ=1 = 0 assures the existence 
of solutions while the arbitrary choice of ground ∑ 𝑈𝑈ℓ𝐿𝐿

ℓ=1 = 0 ensures the uniqueness of the solution. 

We propose a discretization of the forward problem by means of two-dimensional ℙ1 Lagrange FE (Rao 2005). We 
use a triangulation of the domain Ω, which consists of 𝑁𝑁 nodes. We consider the approach of Kaipio et al. (2000) and 
we solve the following linear system: 

𝐾𝐾 ∶= [𝑀𝑀 + 𝑍𝑍 𝐶𝐶
𝐶𝐶𝘛𝘛 𝐺𝐺] [

𝑢𝑢ℎ
𝛽𝛽 ] = [

𝟎𝟎ℝ𝑁𝑁
𝒫𝒫𝘛𝘛𝐼𝐼

], (6) 

where the matrix 𝐾𝐾 ∈ ℝ(𝑁𝑁+𝐿𝐿−1)×(𝑁𝑁+𝐿𝐿−1) is sparse, symmetric, and positive-definite (Kaipio et al. 2000; Crabb 2017). 
The matrices 𝑀𝑀, 𝑍𝑍, 𝐶𝐶, and 𝐺𝐺 are defined, respectively, by: 

𝑀𝑀𝑖𝑖𝑖𝑖 = ∫𝜎𝜎∇𝜑𝜑𝑖𝑖 ∙ ∇𝜑𝜑𝑖𝑖 𝑑𝑑𝑑𝑑
Ω

, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁,𝑍𝑍𝑖𝑖𝑖𝑖 =∑ ∫ 1
𝑧𝑧ℓ
𝜑𝜑𝑖𝑖𝜑𝜑𝑖𝑖 𝑑𝑑𝑑𝑑

𝑒𝑒ℓ

𝐿𝐿

ℓ=1
, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁,

𝐶𝐶𝑖𝑖ℓ = −
1
𝑧𝑧1
∫𝜑𝜑1 𝑑𝑑𝑑𝑑
𝑒𝑒1

+ 1
𝑧𝑧ℓ+1

∫ 𝜑𝜑𝑖𝑖 𝑑𝑑𝑑𝑑
𝑒𝑒ℓ+1

, 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 1 ≤ ℓ ≤ 𝐿𝐿 − 1 

 

and for 1 ≤ ℓ, 𝑘𝑘 ≤ 𝐿𝐿 − 1: 

𝐺𝐺ℓ𝑘𝑘 =

{ 
 
  
|𝑒𝑒1|
𝑧𝑧1

+ |𝑒𝑒𝑘𝑘+1|𝑧𝑧𝑘𝑘+1
,            if  ℓ = 𝑘𝑘, and

 
|𝑒𝑒1|
𝑧𝑧1
,                            otherwise

.  

Moreover, 𝑢𝑢ℎ ∈ ℝ𝑁𝑁 is the vector of nodal values of the unknown potential and 𝐼𝐼 is the vector of currents through the 
electrodes. The columns of the matrix 𝒫𝒫 ∈ ℝ𝐿𝐿×𝐿𝐿−1 are the set of vectors 𝜙𝜙ℓ ∈ ℝ𝐿𝐿 defined as 𝜙𝜙1 = (1, −1, 0, . . . , 0)𝘛𝘛 
,𝜙𝜙2 = (1, 0,−1, . . . , 0)𝘛𝘛, . . . , 𝜙𝜙𝐿𝐿−1 = (1, 0, . . . , −1)𝘛𝘛. The above system uses a dummy variable 𝛽𝛽 ∈ ℝ𝐿𝐿−1 to force 
the uniqueness condition. To transform back to an approximation 𝑈𝑈ℎ of the boundary potential 𝑈𝑈, we have the relation: 

𝑈𝑈ℎ = 𝒫𝒫𝛽𝛽 =∑𝛽𝛽𝑘𝑘𝜙𝜙𝑘𝑘
𝐿𝐿−1

𝑘𝑘=1
. (7) 

Inverse Problem 
The inverse problem (or the reconstruction problem) is the main part of the EIT problem where the conductivity 
distribution of a body Ω is recovered using voltage measurements at the boundary 𝜕𝜕Ω. However, whereas the forward 
problem is well-posed, the inverse problem of EIT is nonlinear and highly ill-posed. In the mathematical literature, 
this is also known as Calderón’s problem (Calderón 1980). A strictly positive conductivity in the elliptic Equation 1 
is uniquely determined in a bounded domain by the entire corresponding Dirichlet-to-Neumann (DtN) map on the 
whole boundary of the domain. The main uniqueness, stability, and reconstruction results have been formulated using 
the so-called continuum model (Astala and Päivärinta 2006). However, in several applications in EIT, one can only 
measure currents and voltages on part of the boundary. Real-life data consist, essentially, of a finite-dimensional linear 
electrode current-to-electrode voltage operator. Results have also been obtained on the problem of whether one can 
determine the conductivity in the interior from only partial information on the DtN map (Uhlmann 2009; Hyvönen et 
al. 2012; Borcea 2011). Furthermore, since voltage measurements are known to be noisy in nature, the solution can 
be dominated by noise unless additional conditions are imposed. As such, EIT is a particularly difficult example of 
attempting to recover a signal from noise (Holder 2000).  

The challenging issues are thus to provide numerical methods for reconstructing the conductivity of a medium from a 
finite number of boundary measurements. There are two primary types of algorithms in EIT: static imaging and 
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difference imaging. Static imaging attempts to recover the absolute conductivity distribution of a body, whereas 
difference imaging aims to recover an image of the change in conductivity distribution between the acquisition times 
of two data. In this work, we will focus on static imaging, which is suitable for the case when the electrical properties 
of the body under study do not vary significantly during the time necessary for data collection (Herrera et al. 2007). 
The inverse problem for EIT reconstructs the conductivity distribution 𝜎𝜎 inside the body Ω from voltage measurements 
{𝑈𝑈ℓ}ℓ=1

𝐿𝐿  on the electrodes {𝑒𝑒ℓ}ℓ=1
𝐿𝐿 . The aim is to retrieve a finite number 𝑛𝑛 of inclusions of different conductivities in 

Ω. More precisely, the goal is to estimate by means of an iterative procedure a vector 𝑃𝑃 ∈ ℝ𝑚𝑚  of unknown parameters 
and the vector 𝑆𝑆 ∶= (𝜎𝜎𝑖𝑖)𝑖𝑖=1

𝑛𝑛  of conductivities, for which the error between the measured voltages and that predicted by 
the CEM forward problem is minimum. The vector 𝑃𝑃 contains geometric attributes (e.g. center, radius, side length) of 
the inclusions Ω𝑖𝑖, 𝑖𝑖 = 1, . . . , 𝑛𝑛,  (of respective conductivities 𝜎𝜎𝑖𝑖). The objective function reads: 

where the voltages 𝑈𝑈(𝑃𝑃, 𝑆𝑆) ∈ ℝ𝐿𝐿 are computed by solving the forward problem (Equations 1−4) at a fixed conductivity 
𝜎𝜎 (described by the vectors P and S ) and 𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜 ∈ ℝ𝐿𝐿 is the measured voltage at the electrodes.‖ ∙  ‖2 is the Euclidean 
norm. 

PROPOSED HEURISTIC ALGORITHMS FOR THE INVERSE PROBLEM 

The development of heuristic algorithms has experienced significant growth over the past two decades (Hussain et al. 
2019). New algorithms, including improved variants of known methods, are continuously being proposed and applied 
to various real-world problems. This is in part due to efforts directed at encouraging the creation of more advanced 
methods, including those of the IEEE Congress on Evolutionary Computation, and Black-Box Optimization 
Competition (Molina et al. 2018). Inspirations behind the methods are wide-ranging – from evolution and the behavior 
of animals to physical processes. As such, the selection process of algorithms included in this study is an attempt to 
balance the diverse inspirations involved in developing the methods and the recency of such methods. 

As pointed out, estimation of the conductivity distribution based on boundary voltages and electric currents is an ill-
conditioned inverse problem. Minimizing the voltage error may then produce unsatisfactory results. Hence, 
reconstruction requires some methods of improving the conditioning so that the wild variations causing the instability 
are ruled out. The most common method is regularization, which involves applying further assumptions and 
constraints based on a priori information. Typically, this means that the inverse problem is augmented with a side 
constraint such as the minimum length solution, the minimum error with respect to a priori solution, or the smoothness 
of the solution (Holder 2000). 

The following heuristic approaches allow restrictions to the solution space and introduction of prior information 
without using the classical regularization techniques described above. Moreover, no evaluation of objective function 
derivatives is needed and no assumption on function continuity needs to be made. However, heuristic algorithms are 
relatively expensive in terms of computing time and this limits their applicability to the field of difference imaging at 
present. Nevertheless, the continuous and rapid advancement of computing technology makes the development of 
real-time dynamic imaging applications based on heuristic methods conceivable in the near future. These heuristic 
algorithms belong to a class of algorithms called metaheuristics (Siarry 2016). 

We will use the following heuristic algorithms: FA, NBA, GA-MPC, LSHADE-SPACMA, LSHADE-cnEpSin, and 
EBOwithCMAR. The detailed discussion of each algorithm and their pseudo-codes are presented in the appendices.  

RESULTS AND DISCUSSION 

Series of numerical tests were carried out to investigate and compare the performance of the proposed algorithms in 
solving the inverse EIT problem. 

𝐶𝐶(𝑃𝑃, 𝑆𝑆) =  ‖𝑈𝑈(𝑃𝑃, 𝑆𝑆) −  𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜 ‖2
2, (8) 
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Presentation of the Test Configurations  
Three different cases were considered (see Table 1). In Case 1, we study a CT (computer tomography) scan of a thorax 
domain obtained from the study of Venkatratnam and Nagi (2017), as shown in Figure 1a. Solving the forward 
problem using the FE method requires the parametrization of the boundaries of the lungs, the heart, and the whole 
body. These parametric curves are approximated using the Fourier series. The coefficients of the Fourier series are 
estimated by finding the parametric curve that fits the data points on the boundary curve. With this, any practical 
domain or object may be studied for real-life applications of EIT. Also, Nissinen et al. (2011) discussed that the errors 
due to the approximations of domain boundary affect the reconstruction of the conductivity. 

Table 1. Different cases studied for the numerical test. 

Case Unknown variables 

1 – The body Ω is a region representing the thorax with the lungs and the heart. 𝜎𝜎𝑙𝑙, 𝜎𝜎ℎ (geometry is fixed) 

2 – The body Ω is a unit circle region with one elliptical inclusion. 𝜎𝜎𝑒𝑒, ℎ, 𝑘𝑘, 𝑎𝑎, 𝑏𝑏, 𝜃𝜃 

3 – The body Ω is a unit circle region with two rotated elliptical inclusions. 𝜎𝜎1, ℎ1, 𝑘𝑘1, 𝑎𝑎1, 𝑏𝑏1, 𝜃𝜃1, 𝜎𝜎2, ℎ2, 𝑘𝑘2, 𝑎𝑎2, 𝑏𝑏2, 𝜃𝜃2 

 

Now, for the numerical simulations of Case 1, only the conductivity values inside the inclusions, 𝜎𝜎𝑙𝑙 and 𝜎𝜎ℎ, are 
unknown. Indeed, the CT results already give the location and the geometry of the organs. We are only interested in 
determining the conductivity values of the inclusions (i.e. lungs and heart). This method is particularly applicable for 
lung or heart function monitoring to check if there is a deviation of the estimated conductivity values from the normal 
values. For Case 2, six parameters are unknown, i.e. 𝜎𝜎𝑒𝑒 is the conductivity of the inclusion; (ℎ, 𝑘𝑘) is the center of the 
ellipse; 𝑎𝑎 and 𝑏𝑏 are the lengths of the major and minor axes, respectively; and 𝜃𝜃 is the angle of rotation. In Case 3, we 
aim in reconstructing two disjoint elliptical inclusions and the respective conductivity inside, i.e. 12 unknown 
parameters. The conductivity 𝜎𝜎0 of the background medium is assumed known in all configurations. In the first case, 
it is equal to 6.7 𝑚𝑚𝑚𝑚. 𝑐𝑐𝑚𝑚−1 while in both the second and third case, the conductivity is 1 𝑚𝑚𝑚𝑚. 𝑐𝑐𝑚𝑚−1. Both cases may 
represent the domains used in the application of EIT for brain or breast tumor detection. 

We work with synthetic data. We take 𝐿𝐿 = 32 electrodes. The contact impedance is constant across the 𝐿𝐿 electrodes 
and it is equal to 0.03. Sixteen (16) current patterns are applied on the electrodes and the first current has the form 
𝐼𝐼1 = {𝐼𝐼ℓ

1}ℓ=0
𝐿𝐿−1 = sin (2𝜋𝜋ℓ

𝐿𝐿 ). The remaining 15 current patterns are obtained by “rotating” the values of the first current 
pattern, i.e. to get the second current pattern 𝐼𝐼2, we have 𝐼𝐼2(0) =  𝐼𝐼1(𝐿𝐿 − 1), 𝐼𝐼2(1: 𝐿𝐿/2) =  𝐼𝐼1(0: 𝐿𝐿/2 − 1), and 
𝐼𝐼2(𝐿𝐿/2 + 1: 𝐿𝐿 − 1) =  𝐼𝐼1(𝐿𝐿/2: 𝐿𝐿 − 2). This is repeated until we obtain the fifteen additional current patterns. The 
synthetic voltage data (𝑢𝑢, 𝑈𝑈) are obtained by solving the forward problem (Equations 1−4) with the exact conductivity 
distribution (see Section 2.1). A FEM mesh structure with 30240 triangular elements, 15409 nodes, and a mesh size 
ℎ = 0.014 was used for the resolution of the forward problem in Case 1; and with 25858 triangular elements, 13122 
nodes, and ℎ = 0.03 for both Cases 2 and 3. In order to avoid an inverse crime [in the sense of Colton and Kress 
(1998)], the inverse computations are done on a mesh with 17240 triangular elements, 8845 nodes, and ℎ =
 0.019 for Case 1; and on a mesh with 17882 triangular elements, 9102 nodes, and ℎ =  0.037 mesh size for Cases 
2 and 3, which are different from the meshes used to solve the forward problems. To model possible experimental 
errors, a 1% random (additive) noise is added to the voltage data as 𝑈𝑈𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑  =  (1 +  0.01 ∗ 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟(𝐿𝐿)) ∗ 𝑈𝑈, 
where 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟(𝐿𝐿) gives a vector of length 𝐿𝐿 where each element is uniformly distributed random number in the 
interval [−1,1] [see Hintermüller and Laurain (2008)]. We note that to consider higher levels of noise, the use of 
regularization methods or more assumptions are needed in the formulation of the inverse problem, especially for Cases 
2 and 3. In our simulations, one noise seed is composed of 16 different noise vectors added to the corresponding 15 
current-voltage measurements.  

The study is based on 20 independent runs of each proposed algorithm, with the same noise seed for all the runs and 
a stopping criterion based on a pre-defined number of function evaluations. The only stopping criterion used for all 
heuristic methods is when the maximum number of function evaluations is reached. In particular, for Case 1, we set 
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the maximum number of function evaluations to 1000; in Cases 2 and 3, we have 1000 ∗  𝐷𝐷 function evaluations 
with 𝐷𝐷 as the number of unknown parameters. The search space was restricted differently for each case. In Case 1, 
the bounds are given by 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  = [0,0] and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  =  [10,10]. Case 2 has bounds 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  =  [5, −1, −1,0,0,0] and 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  =  [9,1,1,2,2, 𝜋𝜋]. For Case 3, we fix 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  =  [5, −1, −1,0,0,0,5, −1, −1,0,0,0] and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 =
 [9,1,1,4,4, 𝜋𝜋, 9,1,1,4,4, 𝜋𝜋]. We implemented the numerical solver for the forward problem with FreeFEM++ (Hecht 
2012) and the numerical optimization algorithms with Matlab. All experiments were executed in Matlab R2018a. The 
parameter settings used for each algorithm can be found in Appendix VII.  

Numerical Results  
The comparative analysis of the heuristic methods is done by measuring the accuracy and precision of the solutions 
generated, together with their respective average costs. This is because the inverse EIT problem is ill-conditioned, 
which means that solutions tend to be extremely sensitive to perturbations, potentially making them inaccurate or 
unstable. To quantitatively analyze the accuracy of recovered images, the average of the reconstruction errors for 20 
runs of each algorithm was calculated. For the ith run, the relative reconstruction error is given by 𝑅𝑅𝑅𝑅 = ‖�̂�𝑦𝑖𝑖−𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡‖2

‖𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡‖2
, 

where �̂�𝑦𝑚𝑚 is a vector containing the values estimated by the algorithm at the 𝑖𝑖𝑡𝑡ℎ run, whereas 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 contains true values. 
Based on Table 1, �̂�𝑦𝑚𝑚 and 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are vectors in ℝ2 for Case 1, in ℝ6 for Case 2, and in ℝ12 for Case 3.  

In order to measure the repeatability (reconstruction accuracy) of each algorithm, i.e. the degree to which the algorithm 
produced similar results for 20 runs, the standard deviation (std. dev.) of the reconstruction errors was also determined. 
Table 2 compares the accuracy, repeatability, and average costs of each algorithm’s reconstructions for the three cases 
considered. From now on, the “average reconstruction error” will be referred to as the “mean error” for simplicity. 
The mean and standard deviation of the reconstruction errors of the generated solutions in the 20 independent runs is 
computed using the mean and std functions in Matlab. 

In all the cases, the final solution or final reconstructed parameter values considered for each algorithm is the average 
solution of the 20 runs. Figures 1, 2, and 3 show the final solution of each algorithm for Cases 1, 2, and 3, respectively. 
The difference in color and the shape of the inclusion between the original image the images generated by the proposed 
heuristic algorithms is the difference between the true solution and the approximate from the true solution is. Table 3 
shows the relative reconstruction error in % of the final solution of each algorithm for the three cases, while Tables 4 
and 5 display the solution. Note that we fixed the range of the conductivities in the plots and so the difference in the 
color and the shape of the inclusion between the original image generated by the proposed heuristic algorithms is the 
difference between the true solution and the approximate solution. 

Table 2. Comparison of accuracy, repeatability, and average cost of the solutions generated by the proposed heuristic algorithms for all 
cases. 

Algorithm Case 1 – thorax Case 2 – one elliptical inclusion Case 3 – two elliptical inclusions 
Mean error Std. dev. Ave. 

cost 
Mean 
error 

Std. dev. Ave. cost Mean error Std. dev. Ave. cost 

FA 5.54E-02 7.77E-02 1.43E-03 0.2193 0.1046 0.6115 0.3071 0.0717 2.8463 

NBA 7.74E-03 4.64E-03 1.43E-03 0.1742 0.0983 0.2562 0.3435 0.0926 1.9620 

GA-MPC 2.23E-03 1.94E-03 1.43E-03 0.1527 0.0554 0.2422 0.1790 0.0530 0.2558 

LSHADE-
SPACMA 

6.08E-04 7.26E-08 1.43E-03 0.1143 0.0385 0.2407 0.1546 0.0674 0.2165 

LSHADE-
cnEpSin 

6.15E-04 4.32E-05 1.43E-03 0.1251 0.0762 0.2423 0.2033 0.0675 0.2219 

EBOiwthCM
AR 

6.10E-04 8.24E-05 1.43E-03 0.0827 0.0693 0.2426 0.1988 0.0685 0.2917 
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                                           Table 3. Reconstruction errors in % of the final solution generated by the proposed  
                                          heuristic algorithms for all cases. 

Algorithm Case 1 Case 2 Case 3 
FA 5.28 6.82 16.56 

NBA 0.152 2.28 21.91 
GA-MPC 0.054 15.11 13.07 

LSHADE-SPACMA 0.060 5.84 7.90 
LSHADE-cnEpSin 0.061 9.63 14.95 
EBOwithCMAR 0.058 6.43 12.00 

 

           Table 4. Reconstruction errors in % of each parameter in the final solution generated by the proposed heuristic algorithms 
         for Cases 1 and 2.   

  

  
The results shown in black bold characters indicate the best values. For Case 1, all the heuristic algorithms studied 
were very successful in the recovery of the conductivity values of the inclusions in Ω. For Case 2, all the heuristic 
algorithms studied well retrieved the center of the ellipse (see Table 4). The difference in performance between them 
lies in the estimation of both the conductivity and the geometric parameters. EBOwithCMAR performed the best while 
getting the least mean error and relatively small average cost. LSHADE-SPACMA got the smallest standard deviation 
and average cost. As expected, because of the low-resolution property of EIT, the estimate for the conductivity value 
inside the inclusion is not as accurate as of the approximation of the geometry. Nevertheless, NBA provided an 
excellent approximation of the conductivity (error 1.94%) while FA, LSHADE-SPACMA, and EBOwithCMAR were 
still able to obtain good conductivity value estimates (see Table 4). GA-MPC yielded the least accurate conductivity 
estimate which justifies the relative error given in Table 3. This means that GA-MPC finds it hard to balance its 
exploration and exploitation when approximating both the geometry of the inclusion and the conductivity inside it. 
NBA and the three most recent algorithms – namely, LSHADE-SPACMA, EBOwithCMAR, and LSHADE-cnEpSin 
– presented impressive reconstructions (see Figure 2); FA is less efficient. Lastly, NBA offered the best relative error 
of the final solution. 

For Case 3, LSHADE-SPACMA showed the best performance with the least mean error and average cost while GA-
MPC is the most consistent among the algorithm because it obtained the least standard deviation of the reconstruction 
error. The recovered images of LSHADE-SPACMA and LSHADE-cnEpSin are the closest ones to the original image. 
GA-MPC and EBOwithCMAR were also able to reconstruct the two inclusions. NBA only obtained a not too bad 

Algorithm 
Case 1 – thorax Case 2 – one elliptical inclusion 

𝜎𝜎𝑙𝑙 𝜎𝜎ℎ 𝜎𝜎𝑒𝑒  ℎ 𝑘𝑘 𝑎𝑎 𝑏𝑏 𝜃𝜃 

FA 1.19E-02 5.34E-02 5.28 2.68 2.06 17.61 41.40 6.37 
NBA 3.69E-03 1.42E-03 1.94 0.68 0.41 7.34 2.15 6.92 

GA-MPC 3.09E-03 2.51E-04 15.50 1.26 0.43 4.76 2.43 4.07 
LSHADE-SPACMA 3.18E-03 3.43E-04 5.92 1.46 0.07 4.00 8.65 0.34 
LSHADE-cnEpSin 3.18E-03 3.62E-04 9.86 1.20 0.22 2.03 3.72 3.95 
EBOiwthCMAR 3.19E-03 3.06E-04 6.55 1.13 0.14 0.09 4.56 4.21 

Table 5. Reconstruction errors in % of each parameter in the final solution generated by the proposed heuristic algorithms for Case 3. 
Algorithm Case 3 – two elliptical inclusions 

𝜎𝜎1 ℎ1 𝑘𝑘1 𝑎𝑎1 𝑏𝑏1 𝜃𝜃1 𝜎𝜎2 ℎ2 𝑘𝑘2 𝑎𝑎2 𝑏𝑏2 𝜃𝜃2 

FA 21.41 11.99 26.56 22.77 70.79 3.81 1.23 86.77 112.4 3.50 23.06 1.63 
NBA 24.73 6.25 19.51 28.82 114.9 5.93 3.66 81.20 88.59 27.28 45.07 2.54 

GA-MPC 19.18 2.18 1.37 13.65 13.32 0.45 7.90 2.59 4.56 8.40 0.51 0.05 
LSHADE-SPACMA 12.59 2.05 0.49 5.32 6.05 0.25 2.52 0.57 1.19 2.11 1.96 0.77 
LSHADE-cnEpSin 23.51 0.62 0.76 9.28 8.18 0.27 5.82 1.66 0.44 1.34 1.52 8.08 
EBOiwthCMAR 18.14 7.45 4.32 10.57 16.59 0.37 1.27 12.57 11.70 8.86 16.47 5.82 
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location of the bigger inclusion but failed to reconstruct the smaller ellipse. FA gave a poor reconstruction of both 
inclusions. For the estimation of conductivity values inside the inclusions, LSHADE-SPACMA achieved a good 
balance in the estimation of the conductivities, EBOwithCMAR yielded the most accurate estimate for the 
conductivity in the smaller inclusion, and LSHADE-SPACMA got the best conductivity estimate for the bigger 
inclusion. NBA is the least accurate in the estimation of the conductivity inside the bigger inclusion, while GA-MPC 
has the least accurate conductivity value estimate for the smaller ellipse. 

Moreover, GA-MPC gave more accurate approximations for both the geometry of the inclusion and its conductivity 
than the standard GA used in (Kim et al. 2006; Ribeiro et al. 2014). Improvements of DE – namely, LSHADE-
SPACMA and LSHADE-cnEpSin – also performed better than the DE used in the study of Rashid et al. (2010). Lastly, 
to compare our results to that of the deterministic method, we applied a quasi-Newton iterative method [Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm] to Cases 1 and 2 with a random initial guess. We use the Matlab built-
in command function fminunc to implement the quasi-Newton iterative algorithm. In Case 1, the reconstruction error 
is 6.17𝐸𝐸 − 04, the standard deviation is 2.21𝐸𝐸 − 04, and the average cost function is 1.4𝐸𝐸 − 03. This is almost the 
same result that we got from the six heuristic algorithms. But for Case 2, BFGS yielded a mean error of 151.6, standard 
deviation 361.8, and average cost function 5.97, which are all huge comparing to the results of the six heuristic 
algorithms. 

Metaheuristic algorithms can be computationally costly since they require many cost function evaluations. Because 
we made the stopping criterion based on the maximum number of function evaluations alone, the run time of all the 
algorithms are approximately equal. For this reason, we only provide the time for each domain case. For Case 1, it 
takes approximately 3𝑠𝑠 for one function evaluation to be done and the number of function evaluations is set to 1000. 
Meanwhile, for Case 2, we have 3.7𝑠𝑠 for one function evaluation and the number of function evaluations is 6000. 
Lastly for Case 3, we get 4.3𝑠𝑠  for one function evaluation with 12000 total number of function evaluations. To expect 
driving 3D computational simulations is challenging. Metaheuristic algorithms are time-consuming and improvements 
are needed to get 3D results. 

CONCLUSION 

In this paper, we have presented a conclusive study of the applicability of several heuristic approaches for EIT image 
reconstruction. Up to our knowledge, this is the first time that such a comparative study (between FA, NBA, GA-
MPC, LSHADE-SPACMA, LSHADE-cnEpSin, and EBOwithCMAR) is addressed for EIT. Numerical simulations, 
given a fixed number of cost function evaluations and default heuristic algorithm parameters, showed that the more 
recent algorithms – namely LSHADE-SPACMA, LSHADE-cnEpSin, and EBOwithCMAR – obtained the best results 
in terms of accuracy, repeatability, and average cost. This indicates the continuous improvement in metaheuristic 
techniques, reinforcing their potential to solve other similar problems. FA did not fare as well the other algorithms, 
especially in retrieving two disjoint inclusions (Case 3), because the maximum number of evaluations and the 
population size for each iteration might not be enough to have a balance between exploitation and exploration. This 
might be also the case for NBA and GA-MPC. 

Although NBA was successful in the image reconstruction of one defect (Cases 1 and 2), it failed in the configuration 
with two defects. Modifications and improvement in these three algorithms can be further studied to obtain more 
competitive results. Since FA, NBA, and GA-MPC populations for each iteration is fixed, we can recommend 
adjusting the population size so that there will be a balance between exploitation and exploration. Also, the maximum 
number of evaluations can be increased. Because of their population size linear reduction and self-adapting parameters 
system, the most recent algorithms LSHADE-SPACMA, LSHADE-cnEpSin, and EBOwithCMAR are more 
consistent and accurate. The different numerical results attest to their efficiency. 
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Figure 1. Estimation of conductivity values inside the fixed geometries of heart and lungs of all proposed heuristic 
algorithms for Case 1. The conductivity of the lungs and the heart are, respectively, 𝝈𝝈𝒍𝒍  = 𝟏𝟏 𝒎𝒎𝒎𝒎. 𝒄𝒄𝒎𝒎−𝟏𝟏 and 
𝝈𝝈𝒉𝒉  = 𝟔𝟔. 𝟑𝟑 𝒎𝒎𝒎𝒎. 𝒄𝒄𝒎𝒎−𝟏𝟏 in the original image. 
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In the thorax domain, where only the conductivities of the inclusions are unknown, the six heuristic algorithms 
provided excellent results. In other cases, the recovery of conductivity needs more improvement. Possible future works 
include using a regularization term in the cost functional to deal with the ill-posedness of the problem or applying 
parameter tuning techniques to better fit the algorithm to the EIT inverse problem. A sensitivity analysis for the CEM 
forward problem could also be used to get a priori information on the dependence of the measured boundary voltages 
on the conductivity and the characteristics of inclusions. This is part of ongoing work. 
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Figure 2. Image reconstructions for Case 2. The conductivity 
inside the ellipse of the original image is σe = 6.7 
mS∙cm–1. 

Figure 3. Image reconstructions for Case 3. The conductivities are 
σ1 = 6.1 mS∙cm–1 (big ellipse) and σ2 = 6.7 mS∙cm–1 
(small ellipse) in the original image. 
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NOTES ON APPENDICES  
The complete appendices section of the study is accessible at http://philjournsci.dost.gov.ph 
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APPENDICES 

Appendix I. Firefly algorithm. 
The flashing light produced by fireflies in a tropical summer sky are known to have two fundamental functions – 
namely, to attract mating partners and to attract potential prey. In FA, these flashes can be formulated in such a way 
that they are linked to the objective function to be optimized. It is a metaheuristic algorithm designed by Xin-She 
Yang in 2007 (Yang 2008). One can find many applications of this algorithm in the literature [see, for example, Fister 
et al. (2013) and Cajayon et al. (2020)].  

An initial population of virtual fireflies is randomly generated. In each time step, the light intensity of each firefly is 
compared pairwisely. In the standard FA, light intensity is determined by the objective function. If a firefly 𝑗𝑗 has a 
greater light intensity than firefly i, the latter will fly towards the former. Note, however, that the movement of firefly 
𝑖𝑖 is determined by three terms: its current position, attraction to the brighter firefly 𝑗𝑗, and a random walk. While the 
light intensity is referred to as an absolute measure of emitted light by the firefly, the attractiveness is a relative 
measure of the light that should be seen in the eyes of the beholders and judged by other fireflies (Fister et al. 2013). 
Attractiveness is affected by the distance 𝑟𝑟 between firefly 𝑖𝑖 and firefly 𝑗𝑗, attractiveness at  𝑟𝑟 = 0, and the degree of 
absorption of light in the air. The light intensities of the fireflies are then updated given the new positions. The fireflies’ 
positions (solutions) are ranked and the current best solution is updated. Detailed discussion of this firefly-inspired 
algorithm can be found in the study of Fister et al. (2013), while the pseudo-code is given below. 

Extensive simulations shown by Fister et al. (2013) were carried out to compare the performance of FA with particle 
swarm optimization and GA. Results showed that FA finds the global minima more efficiently and with higher success 
rate.  

Firefly Algorithm Pseudo-code 

Input: Objective function 𝑓𝑓(𝒙𝒙), 𝒙𝒙 =  (𝑥𝑥1, . . . , 𝑥𝑥𝐷𝐷) for 𝐷𝐷 dimensions, number of fireflies 𝑁𝑁, 

           𝑀𝑀𝑀𝑀𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀, 𝛼𝛼, 𝛾𝛾, 𝛽𝛽, light intensity 𝐼𝐼𝑖𝑖 is determined by 𝑓𝑓(𝒙𝒙𝑖𝑖) 

Output: cost function 𝑓𝑓(𝒙𝒙∗) at optimal 𝒙𝒙∗ 

1: Generate initial population of fireflies 𝒙𝒙𝑖𝑖, 𝑖𝑖 =  1,2, . . . , 𝑁𝑁. 

2: Initial evaluation of all 𝑁𝑁 fireflies. 

3: while 𝐹𝐹𝐹𝐹𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀𝐹𝐹𝐹𝐹 <  𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝐹𝐹𝑀𝑀𝐹𝐹 do 

4: Increment 𝑘𝑘. 

5: for 𝑖𝑖 =  1 to 𝑁𝑁 do 

6:    for 𝑗𝑗 =  1 to 𝑁𝑁 do 

7:       if 𝐼𝐼𝑖𝑖  <  𝐼𝐼𝑗𝑗  then 

8: Move firefly 𝑖𝑖 towards 𝑗𝑗 with 𝒙𝒙𝑖𝑖 = 𝒙𝒙𝑖𝑖 + 𝛽𝛽𝑀𝑀−𝛾𝛾𝑖𝑖𝑗𝑗(𝒙𝒙𝑗𝑗 − 𝒙𝒙𝑖𝑖) + 𝛼𝛼𝜖𝜖𝑖𝑖, where 𝑟𝑟𝑖𝑖𝑗𝑗  is the Cartesian distance between 
two fireflies 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗  and 𝜖𝜖𝑖𝑖 is a vector of random numbers. 

9:        end if 

10:        Evaluate new solutions and update light intensity. 

11:     end for 
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12:  end for 

13: Reduce 𝛼𝛼. 

14: Rank the fireflies and find the current global best solution. 

15: end while 

Appendix II. Novel bat algorithm. 
NBA is a metaheuristic method proposed by Xian-Bing Meng et al. (Meng et al. 2015). NBA is one of the variants of 
the basic bat algorithm (BA) developed by Xin-She Yang in 2010 (Yang 2010) based on the echolocation behavior of 
bats. One of the bat species, known as microbats, are famous for using echolocation extensively. These bats emit a 
very loud sound pulse and listen for the echo that bounces back from the surrounding objects. They use this 
echolocation behavior to detect prey, avoid obstacles, and locate their roosting crevices in the dark (Yang 2010). The 
original BA, however, did not take into account the capacity for Doppler shift compensation of these bats. Their ability 
to locate surrounding objects or targets is attributed not only to their advanced capability of echolocation but also to 
their self-adaptive compensation for Doppler Effect in echoes. Moreover, the original BA did not consider the fact 
that bats hunt in a wide range of habitats. For these reasons, we employed NBA instead of the basic BA. 

In NBA, all virtual bats, depicted by their positions and velocities, search for food in an 𝑁𝑁 −dimensional space. 
Starting with a randomly generated population of bats, each bat is subjected to a selection of habitat/s where it will 
forage. This habitat selection is a stochastic decision such that if a uniform random number in [0,1] is smaller than the 
selection threshold, bat 𝑖𝑖  will forage in a wide range of habitats; otherwise, it would hunt in limited habitats. If a 
randomly generated number is bigger that bat 𝑖𝑖’s pulse emission rate, a local search is performed by making the bat 
fly randomly around a certain neighborhood of the current best position (solution). If bat 𝑖𝑖’s new position is closer to 
the food than the current best, the rate of its pulse emissions is increased while the loudness is decreased. Finally, after 
looping through all the bats, the bats are ranked according to their proximity to the food, which is represented by their 
objective function values. If the best solution does not improve after a certain time steps, the loudness and pulse 
emission rates of the bats are re-initialized. A detailed explanation of NBA can be found in the study of Meng et al. 
(2015), while the pseudo-code is given below. 

In the study (Meng et al. 2015), the performance of NBA was tested under twenty optimization problems and four 
real-world engineering designs. Simulations showed that NBA is effective, efficient, stable, and superior over some 
well-known algorithms such as the original BA, particle swarm optimization, flower pollination algorithm, and even 
DE. 

Novel Bat Algorithm Pseudo-code 

Input: Objective function 𝑓𝑓(𝒙𝒙), 𝒙𝒙 =  (𝒙𝒙1, . . . , 𝒙𝒙𝐷𝐷) for 𝐷𝐷 dimensions, number of bats 𝑁𝑁, 

           maximum number of iterations �̃�𝑀, 𝛼𝛼, 𝛾𝛾, 𝐺𝐺, 𝑤𝑤, 𝜃𝜃, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚, 

           𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  

Output: cost function 𝑓𝑓(𝒙𝒙∗) at optimal 𝒙𝒙∗ 

1: Generate initial population of bats 𝑥𝑥𝑚𝑚𝑖𝑖
𝑘𝑘  and velocities 𝑣𝑣𝑚𝑚𝑖𝑖

𝑘𝑘 , 𝑖𝑖 =  1,2, . . . , 𝑁𝑁, 𝑗𝑗 =  1,2, . . . , 𝐷𝐷. 

2: Initial evaluation of all 𝑁𝑁 bats. 

3: Rank the bats with 𝑔𝑔𝑖𝑖
𝑘𝑘 as the best global position and its velocity is 𝑣𝑣𝑔𝑔𝑖𝑖

𝑘𝑘 . 

4: while 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑣𝑣𝐹𝐹𝐹𝐹𝐹𝐹 <  𝑀𝑀𝐹𝐹𝑥𝑥𝐹𝐹𝑣𝑣𝐹𝐹𝐹𝐹 do 
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5:  if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)  <  𝑃𝑃, where 𝑃𝑃 ∈  [𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚] then 

6:     Generate new solutions with  

𝒙𝒙𝑚𝑚𝑖𝑖𝑘𝑘+1 =

{ 
 
          𝑔𝑔𝑖𝑖

𝑘𝑘 + 𝜃𝜃|mean𝑖𝑖𝑡𝑡 − 𝒙𝒙𝑚𝑚𝑖𝑖𝑘𝑘 | ln (
1
𝜇𝜇𝑚𝑚𝑖𝑖
) ,         if rand j(0,1) < 0.5

 𝑔𝑔𝑖𝑖𝑘𝑘 − 𝜃𝜃|mean𝑖𝑖𝑡𝑡 − 𝒙𝒙𝑚𝑚𝑖𝑖𝑘𝑘 | ln (
1
𝜇𝜇𝑚𝑚𝑖𝑖
)  ,                 otherwise.

  

 

7:  else 

8:     Generate new solutions with   

𝑓𝑓𝑚𝑚𝑖𝑖  =  𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚) 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1), 

𝑓𝑓𝑚𝑚𝑖𝑖  =  (
𝑐𝑐 + 𝑣𝑣𝑚𝑚𝑖𝑖𝑘𝑘
𝑐𝑐 + 𝑣𝑣𝑔𝑔𝑖𝑖𝑘𝑘

)𝑓𝑓𝑚𝑚𝑖𝑖 (1 + 𝐶𝐶𝑚𝑚
𝑔𝑔𝑖𝑖𝑘𝑘 − 𝒙𝒙𝑚𝑚𝑖𝑖𝑘𝑘

|𝑔𝑔𝑖𝑖𝑘𝑘 − 𝒙𝒙𝑚𝑚𝑖𝑖𝑘𝑘 | + 𝜖𝜖
), 

𝑣𝑣𝑚𝑚𝑖𝑖𝑘𝑘+1 = 𝑤𝑤𝑣𝑣𝑚𝑚𝑖𝑖𝑘𝑘 + (𝑔𝑔𝑖𝑖𝑘𝑘 − 𝒙𝒙𝑚𝑚𝑖𝑖𝑘𝑘 )𝑓𝑓𝑚𝑚𝑖𝑖 , 

𝒙𝒙𝑚𝑚𝑖𝑖𝑘𝑘+1 = 𝒙𝒙𝑚𝑚𝑖𝑖𝑘𝑘 + 𝑣𝑣𝑚𝑚𝑖𝑖𝑘𝑘 ,  

    where 𝑤𝑤 ∈  [0,1] is a uniform random vector, 𝜖𝜖 is the smallest constant in the  

    computer, 𝐶𝐶 ∈  [𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚], and 𝑐𝑐 =  340𝑚𝑚/𝑠𝑠 is the speed in the air. 

9: end if 

10: if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)  >  𝑟𝑟𝑚𝑚  then 

11:    Generate a local solution around the selected best solution using 

𝒙𝒙𝑚𝑚𝑖𝑖𝑘𝑘+1 =  𝑔𝑔𝑖𝑖𝑘𝑘(1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟(0, 𝜎𝜎2)),  

where 𝜎𝜎2 = |𝐴𝐴𝑚𝑚𝑘𝑘 − 𝐴𝐴mean
𝑘𝑘 | + 𝜖𝜖, and rand 𝑟𝑟(0, 𝜎𝜎2) is a Gaussian distribution with  

mean 0 and standard deviation 𝜎𝜎2, and 𝐴𝐴mean
𝑘𝑘  is the average loudness of all bats  

at time step 𝑡𝑡. Note that 𝜖𝜖 is used to ensure that 𝜎𝜎2  >  0. 

12: end if 

13: Evaluate new solutions. 

14: Update solutions, the loudness, and pulse emission rate using  

𝑓𝑓(𝒙𝒙) =  𝑓𝑓(𝒙𝒙𝑚𝑚) 𝑖𝑖𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (0,1) < 𝐴𝐴𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓(𝒙𝒙𝑚𝑚) < 𝑓𝑓(𝒙𝒙), 

𝐴𝐴𝑚𝑚𝑘𝑘+1 = 𝛼𝛼𝐴𝐴𝑚𝑚𝑘𝑘, 

𝑟𝑟𝑚𝑚𝑘𝑘+1 = 𝑟𝑟𝑚𝑚0(1 − 𝑒𝑒−𝛾𝛾𝑘𝑘), 
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15: Rank the solutions and find the current best 𝑔𝑔𝑘𝑘. 

16: if 𝑔𝑔𝑘𝑘 does not improve in 𝐺𝐺 time step then 

    Re-initialize the loudness 𝐴𝐴𝑖𝑖 and set temporary pulse rates 𝑟𝑟𝑖𝑖 which is a uniform  

   number between [0.85,0.9]. 

17: end if 

18: Increment 𝑘𝑘. 

19: end while 

Appendix III. Genetic algorithm with multi-parent crossover. 
First proposed by John Holland in 1975 (Holland 1975), GA is originally based on the Darwinian principle of 
evolution. There have been a number of developments in GA theory and it is still a growing area. GA is one of the 
most popular heuristic algorithms and has been applied to different problems in science and engineering. A typical 
design for a classical GA would be as follows. Starting with a randomly generated population, GA carries out a process 
of fitness-based selection and recombination to produce a successor population – the next generation. In the fitness-
based selection, the more fit members – called parents – of the population are selected. The selected members are then 
recombined to form members of the successor population. Recombination has two components: crossover operator 
and mutation operator. The crossover operator represents the combination of vector entries of a pair of parents to 
produce children. The mutation operator, on the other hand, refers to making random changes to a single parent. The 
new population is then carried over to the next generation. A widely used evolution scheme is elitism, where the best 
one or two individuals from the current population are carried over to the next generation unaltered to guarantee that 
the solution quality obtained by the algorithm will not decrease from one generation to the next. 

In this study, GA-MPC – a variant of GA that proposes a new crossover method – and randomized operation in lieu 
of mutation, is considered (Elsayed et al. 2011). Unlike GA’s original formulation, GA-MPC creates an archive pool 
where the best 𝑚𝑚 individuals are stored and a selection pool with size 𝑡𝑡𝑡𝑡, chosen randomly, is reserved for successful 
individuals from the tournament selection. Individuals in the selection pool are used for performing crossover, where 
three parents generate three offsprings: two are designed for exploitation; the other for exploration. After which, a 
randomized operator is performed with probability 𝑝𝑝 to escape any local minimum. Individuals in the archive pool are 
then merged with all of the offsprings, where the worst individuals are removed from the population. The surviving 
population are then carried over to the next generation. A detailed explanation of GA-MPC can be found in the study 
of Elsayed et al. (2011), while the pseudo-code is given below. 

In the study (Elsayed et al. 2011), GA-MPC was tested using the real-world numerical optimization problems of the 
IEEE CEC 2011 Real-World Numerical Optimization Special Session (Das and Suganthan 2010), and ranked first 
among fourteen participating algorithms (Molina et al. 2018). 

GA-MPC Pseudo-code 

Input: Objective function 𝑓𝑓(𝒙𝒙), 𝒙𝒙 = (𝒙𝒙1, . . . , 𝒙𝒙𝐷𝐷) for 𝐷𝐷 dimensions, 𝑃𝑃𝑃𝑃, 𝒙𝒙𝑚𝑚𝑖𝑖𝑚𝑚, 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚, 𝛽𝛽, 𝑡𝑡𝑟𝑟, 𝑚𝑚  

Output: cost function 𝑓𝑓(𝒙𝒙∗) at optimal 𝒙𝒙∗ 

1: Generate initial random population of size 𝑃𝑃𝑃𝑃 with  

𝒙𝒙𝑖𝑖 = 𝒙𝒙𝑚𝑚𝑖𝑖𝑚𝑚,𝑖𝑖 + 𝑢𝑢(𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 − 𝒙𝒙𝑚𝑚𝑖𝑖𝑚𝑚,𝑖𝑖),  
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    where 𝑢𝑢 is a random vector with values in [0,1]. 

2: while 𝐹𝐹𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 <  𝑀𝑀𝐹𝐹𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 do 

3:  Rank all the individuals in the population by their cost function value and choose  

the best 𝑚𝑚 individuals to form the archive pool �̃�𝐴. 

4:  Apply a tournament selection with size 𝑇𝑇𝑇𝑇 and fill the selection pool. 

5:  Generate a random number �̅�𝑢 in [0,1]. 

6: for each three consecutive individuals in the selection pool do 

7:    if one of the selected individual is the same to another then 

8:       Replace one by a randomly-selected individual in the selection pool. 

9:    end if 

10:    if 𝑢𝑢 <  𝐹𝐹𝑐𝑐 then 

11:       Rank these three individuals 𝑓𝑓(𝒙𝒙𝑖𝑖) ≤ 𝑓𝑓(𝒙𝒙𝑖𝑖+1) ≤ 𝑓𝑓(𝒙𝒙𝑖𝑖+2). 

12:       Calculate 𝛽𝛽 =  𝑁𝑁(𝜇𝜇, �̃�𝜎). 

13:       Generate three offspring from the three parents with  

𝑜𝑜1 = 𝒙𝒙1 + 𝛽𝛽(𝒙𝒙2 − 𝒙𝒙3), 

𝑜𝑜2 = 𝒙𝒙2 + 𝛽𝛽(𝒙𝒙3 − 𝒙𝒙1), 

𝑜𝑜3 = 𝒙𝒙3 + 𝛽𝛽(𝒙𝒙1 − 𝒙𝒙2). 

 

14:    end if 

15:    for each offspring 𝑜𝑜𝑖𝑖 do 

16:       Generate a random number �̅�𝑢 in [0,1]. 

17:       if 𝑢𝑢 <  𝑝𝑝 then 

18:          Mutate the offspring by 𝑜𝑜𝑖𝑖
𝑗𝑗 = 𝒙𝒙𝑎𝑎𝑎𝑎𝑎𝑎ℎ

𝑗𝑗 , where 𝒙𝒙𝑎𝑎𝑎𝑎𝑎𝑎ℎ is an individual from the  

         archive pool and 𝐹𝐹𝑐𝑐𝐹𝐹ℎ ∈  [1, 𝑚𝑚]. 

19:       end if 

20:    end for 

21: end for 

22: if there is a duplicate individual then 
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23:    Replace the duplicate with  

𝒙𝒙𝑖𝑖
𝑗𝑗 = 𝒙𝒙𝑖𝑖

𝑗𝑗 + 𝑁𝑁(0.5 ∗ �̅�𝑢, 0.25 ∗ �̅�𝑢), 

    where �̅�𝑢  ∈  [0,1]. 

24: end if 

25: end while 

Appendix IV. LSHADE-SPACMA algorithm. 
DE is another popular population-based algorithm similar to GA. Currently, there is a huge progress in the study of 
improvements of DE and its diverse applications (Das et al. 2016). LSHADE, a DE-based algorithm (Price et al. 
2005), is a proposed improvement to SHADE (Tanabe and Fukunaga 2013) that implements a linear population size 
reduction scheme to focus on exploitation as the optimization process progresses (Tanabe and Fukunaga 2014). 
Similar to SHADE, it uses the current-to-𝑝𝑝 best/1 mutation strategy initially proposed in JADE (Zhang and Sanderson 
2009), and a binomial crossover method (Tanabe and Fukunaga 2013, 2014). LSHADE also retains the improvements 
proposed in SHADE for the adaptation of the scaling factor 𝐹𝐹 and the crossover rate 𝑐𝑐𝑐𝑐 using function distributions 
(Tanabe and Fukunaga 2013, 2014).  

Covariance Matrix Adaptation – Evolutionary Strategy (CMA-ES), on the other hand, is another adaptive algorithm 
that adapts the multi-variate normal distribution (Hansen 2006). As an evolution-inspired algorithm, CMA-ES steps 
are very similar to that of DE (Price et al. 2005) and GA (Holland 1975). It starts with an initial “population” of search 
points sampled from the initial multi-variate normal distribution followed by selection and recombination to update 
the mean, step size control to update the evolution path, and CMA (Hansen 2006). 

In this study, LSHADE-SPACMA is considered. It is an improved version of LSHADE (Tanabe and Fukunaga 2014) 
that uses a semi-parameter adaptation method for the scaling factor 𝐹𝐹 and crossover rate 𝑐𝑐𝑐𝑐, and a hybridization 
framework with a modified version of CMA-ES (Hansen 2006; Mohamed et al. 2017). As opposed to complete- or 
self-adaptation, LSHADE-SPACMA uses semi-adaptation. The adaptation process depends on the number of function 
evaluations carried out so far, i.e. until the algorithm reaches half of the defined maximum number of function 
evaluations, it will only focus on adapting the crossover rate 𝑐𝑐𝑐𝑐, while the scaling factor 𝐹𝐹  is generated randomly 
using a uniform distribution within the range of (0.45, 0.55). In the second half of the adaptation process, the scaling 
factor 𝐹𝐹 is adapted. Furthermore, the algorithm uses a modified CMA-ES where a crossover operation is added after 
the offspring generation (sampling of new points) step. The hybridization is done by allocating subpopulations 
between LSHADE and modified CMA-ES to produce donor vectors, where the allocation throughout the optimization 
process varies depending on the performance of each algorithm. A detailed discussion of LSHADE-SPACMA can be 
found in the study of Mohamed et al. (2017), while a simplified pseudo-code is given below. 

In the study (Mohamed et al. 2017), LSHADE-SPACMA was evaluated using the set of problems presented in IEEE 
CEC 2017 Real-Parameter Special Session bound constrained case (Awad et al. 2016a), where it ranked fourth out of 
the twelve participating algorithms (Molina et al. 2018). 

Simplified LSHADE-SPACMA Pseudo-code 

Input: Objective function 𝑓𝑓(𝒙𝒙), 𝒙𝒙 =  (𝒙𝒙1, … , 𝒙𝒙𝐷𝐷)for 𝐷𝐷 dimensions, memories 𝑀𝑀𝐶𝐶𝐶𝐶, 𝑀𝑀𝐹𝐹, and  

𝑀𝑀𝐹𝐹𝐶𝐶𝐹𝐹, 𝐴𝐴𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑝𝑝𝑏𝑏𝑟𝑟𝑏𝑏𝑟𝑟, 𝑐𝑐, 𝐻𝐻, 𝑃𝑃𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚, 𝑃𝑃𝑃𝑃𝑚𝑚𝑟𝑟𝑚𝑚. 

Output: cost function 𝑓𝑓(𝒙𝒙∗) at optimal 𝒙𝒙∗ 

1: Generate initial random population with size 𝑃𝑃𝑃𝑃𝑚𝑚𝑟𝑟𝑚𝑚. 

2: Set values of memories 𝑀𝑀𝐶𝐶𝐶𝐶, 𝑀𝑀𝐹𝐹,and 𝑀𝑀𝐹𝐹𝐶𝐶𝐹𝐹 to 0.5. 
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3: Initialize CMA parameters. 

4: while 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 <  𝑀𝑀𝐹𝐹𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 do 

5:  Semi-parameter adaptation (SPA) for scaling factor 𝐹𝐹 and crossover rate 𝐶𝐶𝐶𝐶.  

 During the first part of SPA, the adaptation is concentrated on 𝐶𝐶𝐶𝐶 and for the  

 second part the focus of the adaptation is on 𝐹𝐹. 

6:  Split the population into two. 

7: Generate donor vectors using LSHADE or modified CMA-ES. 

8: Concatenate resulting vectors from LSHADE and modified CMA-ES. 

9: Generate trial vectors and mutate with 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . 

10: Evaluate fitness of trial vectors. 

11: Implement selection strategy. 

12: Update population allocated to LSHADE and CMA-ES according to the relative  

               performance of the two methods. 

13: Store successful parameters to memory of size 𝐻𝐻. 

14: Update archive with rate 𝐴𝐴𝐴𝐴𝐹𝐹𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏. 

15: Update memory memory 𝑀𝑀𝐹𝐹 during the first part of SPA and 𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹 with 𝐹𝐹 during the  

               second part. Update also 𝑀𝑀𝐹𝐹𝐶𝐶. 

16: Implement linear population size reduction with min pop size 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 . 

17: Sort individuals and retain them based on the new population size. 

18: Update CMA-ES parameters. 

19: end while 

Appendix V. LSHADE-cnEpSin algorithm. 
As the name suggests, LSHADE-cnEpSin is another DE-based algorithm that is similar to LSHADE (Tanabe and 
Fukunaga 2014) and its variants. While it shares certain characteristics with LSHADE (Tanabe and Fukunaga 2014) 
or LSHADE-SPACMA (Mohamed et al. 2017) such as linear population size reduction or its use of current-to-𝑝𝑝 best/1 
mutation strategy, LSHADE-cnEpSin adds an ensemble sinusoidal approach to adapt the values of the scaling factor 
𝐹𝐹 non-adaptive sinusoidal decreasing adjustment and adaptive history-based sinusoidal increasing adjustment (Awad 
et al. 2016b, 2017). In the former, a decreasing sine-based formula is used where the wave-like configuration dampens 
as the optimization process progresses; in the latter, an increasing adaptive sine-based formula using Cauchy 
distributions with mean taken from an external memory (which stores successful mean frequencies) is considered. The 
choice of which sinusoidal approach to use is based on previous performance. In particular, a learning period is first 
implemented for a certain number of generations before the respective probabilities for each sine-based formula is 
updated (Awad et al. 2017). These sinusoidal approaches are only activated in the first half of the optimization process, 
while the usual formulation of SHADE (Tanabe and Fukunaga 2013) in adapting the scaling factor 𝐹𝐹, using Cauchy 
distributions, is used in the second half (Awad et al. 2017). 
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LSHADE-cnEpSin, although sharing the same adaptation process for the crossover rate 𝑐𝑐𝑐𝑐 with LSHADE (Tanabe 
and Fukunaga 2014), adds another crossover operator using covariance matrix learning with Euclidean neighborhood 
(Awad et al. 2017). This process is done by marking the best individual, and computing the Euclidean distance 
between the best and every other individual in the population. A number of best individuals in terms of Euclidean 
distance are then used to generate the covariance matrix, which are then used to update the target and trial vectors 
(Awad et al. 2017). A detailed discussion of LSHADE-cnEpSin can be found in the study of Awad et al. (2017), while 
a simplified pseudo-code is given below. 

In the study (Awad et al. 2017), LSHADE-cnEpSin was evaluated using the set of problems presented in IEEE CEC 
2017 Real-Parameter Special Session bound constrained case (Awad et al. 2016a), where it ranked third out of the 
twelve participating algorithms (Molina et al. 2018). 

Simplified LSHADE-cnEpSin Pseudo-code 

Input: Objective function 𝑓𝑓(𝒙𝒙), 𝒙𝒙 =  (𝒙𝒙1, … , 𝒙𝒙𝐷𝐷)for 𝐷𝐷 dimensions, memories 𝑀𝑀𝐶𝐶𝐶𝐶, 𝑀𝑀𝐹𝐹, and  

𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝐴𝐴𝑐𝑐𝑐𝑐𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓, 𝑝𝑝𝑏𝑏𝑓𝑓𝑏𝑏𝑟𝑟, 𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓, 𝐻𝐻, 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, 𝑃𝑃𝑃𝑃𝑚𝑚𝑟𝑟𝑚𝑚, 𝐺𝐺𝑚𝑚𝑟𝑟𝑚𝑚 . 

Output: cost function 𝑓𝑓(𝒙𝒙∗) at optimal 𝒙𝒙∗ 

1: Generate initial random population with size 𝑃𝑃𝑃𝑃𝑚𝑚𝑟𝑟𝑚𝑚. 

2: Initialize 𝐺𝐺𝑚𝑚𝑟𝑟𝑚𝑚 =  2163. 

3: Set values of memories 𝑀𝑀𝐶𝐶𝐶𝐶, 𝑀𝑀𝐹𝐹,and 𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 to 0.5. 

4: Initialize covariance matrix settings. 

5: while 𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 <  𝑀𝑀𝐹𝐹𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 do 

6: if number of generation is < 𝐺𝐺𝑚𝑚𝑟𝑟𝑚𝑚/2 then 

7:    Implement sinusoidal configuration to adapt 𝐹𝐹 using 𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓. 

8: else 

9:    Use Cauchy distribution to adapt 𝐹𝐹. 

10: end if 

11: Adapt 𝐶𝐶𝐶𝐶 using normal distribution. 

12: for 𝑖𝑖 =  1 to population size do 

13:    Generate mutant vectors with 𝑝𝑝𝑏𝑏𝑓𝑓𝑏𝑏𝑟𝑟 . 

14:    Apply covariance matrix learning or binomial crossover to generate trial vectors. 

15:    Store successful 𝐹𝐹 and 𝐶𝐶𝐶𝐶. 

16: end for 

17: Update memory 𝑀𝑀𝐶𝐶𝐶𝐶, 𝑀𝑀𝐹𝐹 of size 𝐻𝐻, and archive with rate 𝐴𝐴𝑐𝑐𝑐𝑐𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓. 

18: Implement linear population size reduction with min pop size 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 . 

19: Sort individuals and retain them based on the new population size. 

20: end while 
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Appendix VI. EBOwithCMAR algorithm. 
Effective butterfly optimizer (EBO), proposed in 2015, is inspired by the mate locating behavior of male butterflies 
(Kumar et al. 2015). Two mate locating behaviors are used for the modification of the population: perching for 
exploitation and patrolling for exploration. The algorithm starts with an initial population of male butterflies, which 
are then divided into two subpopulations: main and auxiliary butterflies. The main population of butterflies start 
perching and only change to patrolling if their positions are not updated by the former strategy. 

In this study, an improvement to EBO named EBOwithCMAR is considered. Unlike EBO that uses two 
subpopulations, EBOwithCMAR uses three: two are for EBO (Kumar et al. 2015) and one for covariance matrix 
adapted retreat (Hansen 2006; Kumar et al. 2017). The additional subpopulation is meant to improve the exploitation 
capability of the algorithm. Moreover, EBOwithCMAR improves the perching and patrolling strategies by adjusting 
the crisscross and towards-best modification, and adding a crossover operator (Kumar et al. 2017). It also uses an 
adaptive strategy for the scaling factor 𝐹𝐹 and the crossover rate 𝑐𝑐𝑐𝑐 and a linear population size reduction – the same 
schemes used in LSHADE (Tanabe and Fukunaga 2014). A data sharing scheme is also added where the better 
performing algorithm shares information about the solution to the other algorithm (Kumar et al. 2017). 

Each cycle (iteration) begins with a “learning period” where both perching and patrolling schemes are given equal 
probability. Probabilities are held fixed until half a cycle is reached, which are then updated. Once a full cycle is 
reached, the algorithm implements a data sharing scheme where the better performing algorithm between EBO and 
CMAR is determined. If EBO is the better algorithm, the population dedicated to CMAR is replaced by a random 
element from the main population of EBO. On the other hand, if CMAR is the better algorithm, the worst individual 
in the main population of EBO is replaced by the best individual from the population dedicated to CMAR. After the 
data sharing scheme, parameter values are reset and the probabilities for perching and patrolling are returned to their 
initial values. EBOwithCMAR further enhances the exploitation capability of EBO by employing sequential quadratic 
programming at the later phases of the optimization process. A detailed discussion of EBOwithCMAR can be found 
in the study of Kumar et al. (2017), while a simplified pseudo-code is given below. 

In the study (Kumar et al. 2017), EBOwithCMAR was evaluated using the set of problems presented in IEEE CEC 
2017 Real-Parameter Special Session bound constrained case (Awad et al. 2016a), where it ranked first out of the 
twelve participating algorithms (Molina et al. 2018). 

Simplified EBOwithCMAR Pseudo-code 

Input: Objective function 𝑓𝑓(𝒙𝒙), 𝒙𝒙 =  (𝒙𝒙1, … , 𝒙𝒙𝐷𝐷)for 𝐷𝐷 dimensions, population sizes  𝑃𝑃𝑃𝑃1,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑃𝑃1,𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑃𝑃𝑃𝑃2,𝑚𝑚𝑚𝑚𝑚𝑚 
and 𝑃𝑃𝑃𝑃2,𝑚𝑚𝑚𝑚𝑚𝑚 , and 𝑃𝑃𝑃𝑃3, 𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙, 𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝2, and cycle 𝐶𝐶𝑃𝑃 

Output: cost function 𝑓𝑓(𝒙𝒙∗) at optimal 𝒙𝒙∗ 

1: Generate initial random population with size 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚. 

2: Set 𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝1 for EBO and 𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝2 for CMAR to 1. Set other parameters. 

3: Randomly assign members of the main population to three subpopulations 𝑋𝑋1, and 𝑋𝑋2  

    for EBO and 𝑋𝑋3 for CMAR. The max and min population size for 𝑋𝑋1 are 𝑃𝑃𝑃𝑃1,𝑚𝑚𝑚𝑚𝑚𝑚 and  

    𝑃𝑃𝑃𝑃1,𝑚𝑚𝑚𝑚𝑚𝑚 , respectively, 𝑃𝑃𝑃𝑃2,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑃𝑃1,𝑚𝑚𝑚𝑚𝑚𝑚  for 𝑋𝑋2, and 𝑃𝑃𝑃𝑃3 is the pop size for 𝑋𝑋3. 

4: while 𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 <  𝑀𝑀𝐹𝐹𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 do 

5:  if number of cycle is ==  𝐶𝐶𝑃𝑃/2 then 

6:    Update 𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝1  and 𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝2. 
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7: end if 

8:  if number of cycle is ==  𝐶𝐶𝐶𝐶 then 

9:    Implement data sharing. 

10:    Update parameters for EBO using 𝐻𝐻 and CMAR with �̃�𝜎. 

11:     Reset 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 and number of cycles. 

12: end if 

13: if 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟(0,1)  <  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 then 

14:    Apply EBO. 

15:    Implement linear population size reduction and reallocate subpopulations. 

16: end if 

17: if rand(0,1)  <  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 then 

18:    Apply CMAR. 

19: end if 

20: if rand(0,1)  <  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙 and 𝐹𝐹𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹 ≥  0.75 ∗  𝑀𝑀𝑟𝑟𝑀𝑀𝐹𝐹𝐹𝐹𝑟𝑟𝐹𝐹 then 

21:    Apply SEQ. 

22:    if best solution is improved then 

23:       Set 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙 to 0.1. 

24:       Update 𝑋𝑋1 and 𝑋𝑋2. 

25:    else 

26:       Set 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙 to 0.0001. 

27:    end if 

28: end if 

29: Sort individuals and update allocations between subpopulations. 

30: end while 

Appendix VII. Parameter setting for heuristic methods. 
The parameter settings used in all the algorithms are set to values in their original formulation. In particular, the default 
values in the main papers cited in Section 3 for each algorithm are chosen, unless certain configurations need to be 
made to address issues, such as algorithmic complexity. The lack of parameter tuning to fit the EIT problem in 
conducting the numerical simulations is intended to ensure that the study does not favor any algorithm, which allows 
for a thorough comparison of the original methods. 

Parameters for FA were set as follows: 𝛼𝛼0  =  0.2, 𝛾𝛾 =  1, and 𝛽𝛽 =  0.2, where 𝛼𝛼0 is the initial randomization 
parameter, 𝛾𝛾 is the light absorption coefficient, and 𝛽𝛽 is the base attraction coefficient. The population size in each 
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generation for FA varies for each case: Case 1 has 20 fireflies, Case 2 has 30, and Case 3 has 60. Each firefly would 
require the computation of the cost functional (18), which is expensive and accounts for the major running time of the 
algorithm. 

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚  0 𝛼𝛼 0.9 

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 1 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  0.6 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  0 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 0.9 

𝑓𝑓𝑚𝑚𝑚𝑚 1.5 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 0.1 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 1 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 0.9 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 2 𝐺𝐺 10 

𝛾𝛾 0.9   

  
In the table above, the parameter settings for NBA are enumerated: 𝑟𝑟, 𝑓𝑓, and 𝐴𝐴 denote the rate, frequency, and loudness 
of sound pulses emitted by bats, respectively. 𝑃𝑃 denotes the probability of habitat selection, while 𝐶𝐶 denotes the 
compensation rate for Doppler effect in echoes. The constants 𝛾𝛾 and 𝛼𝛼 are used to update 𝑟𝑟 and 𝐴𝐴. The 
parameters 𝑟𝑟 and 𝐴𝐴 are re-initialized if the best solution does not change after 𝐺𝐺 time steps. Meanwhile, the 
contraction-expansion coefficient 𝜃𝜃 and the inertia weight 𝑤𝑤 are adjusted according to the parameter control method 
described by Tian et al. (2012), i.e. using 𝑎𝑎 ∙ cos ( 𝜋𝜋𝜋𝜋

2�̃�𝑀) + 𝑎𝑎, where 𝑡𝑡 is the current time step, and 𝑎𝑎 =  0.5 for 𝜃𝜃 
while 𝑎𝑎 =  0.4 for 𝑤𝑤. While �̃�𝑀  is defined to be the maximum number of time steps in the study of Tian et al. (2012), 
in this work, we set its value to be the IEEE arithmetic representation for positive infinity.  

Parameters for GA-MPC were set as follows: population size 𝑃𝑃𝑃𝑃 =  90, “crossover factor” 𝛽𝛽 ∼
𝑁𝑁(0.5,0.3), crossover rate 𝑐𝑐𝑟𝑟 =  1, tournament selection size generated randomly between 2 and 3, and archive pool 
size |𝐴𝐴|  =  45 (half the population size) (Elsayed et al. 2011). LSHADE-SPACMA and LSHADE-cnEpSin share 
several parameter values: initial population size 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  =  18 ∗  𝐷𝐷 and minimum population size 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  =  4 as both 
algorithms implement a linear population size reduction, initial values for 𝑀𝑀𝐶𝐶𝐶𝐶, 𝑀𝑀𝐹𝐹 at 0.5, factor that controls the 
greediness of the mutation strategy 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝜋𝜋  =  0.11, archive rate 𝐴𝐴𝑟𝑟𝑐𝑐𝑟𝑟𝑚𝑚𝜋𝜋𝑏𝑏  =  1.4, and memory size 𝐻𝐻 =  5 used in 
storing adapted parameters (Awad et al. 2017; Mohamed et al. 2017). Parameter settings specific to LSHADE-
SPACMA are as follows: initial value for 𝑀𝑀𝐹𝐹𝐶𝐶𝐹𝐹  =  0.5 used in the hybridization framework, and learning rate 𝑐𝑐 =
 0.8 used in updating the probability for hybridization (Mohamed et al. 2017); while the parameter specific to 
LSHADE-cnEpSin used for the non-adaptive sinusoidal decreasing adjustment 𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓 is set to 0.5 (Awad et al. 2017).  

EBOwithCMAR uses the following parameter values: for EBO, it uses the same initial population size 𝑃𝑃𝑃𝑃1,𝑚𝑚𝑚𝑚𝑚𝑚  =
 18 ∗  𝐷𝐷, minimum population size 𝑃𝑃𝑃𝑃1,𝑚𝑚𝑚𝑚𝑚𝑚  =  4 for 𝑃𝑃𝑃𝑃1 with LSHADE-SPACMA and LSHADE-cnEpSin (Awad et 
al. 2017; Mohamed et al. 2017), 𝑃𝑃𝑃𝑃1,𝑚𝑚𝑚𝑚𝑚𝑚  =  46.8 ∗  𝐷𝐷, 𝑃𝑃𝑃𝑃2,𝑚𝑚𝑚𝑚𝑚𝑚  =  10, and memory size 𝐻𝐻 =  6; while for 
CMAR, 𝑃𝑃𝑃𝑃3  =  4 +  3𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷), �̃�𝜎 =  0.03, number of evaluations constituting a cycle 𝐶𝐶𝑃𝑃 =  50, and local search 
update probability 𝑝𝑝𝑟𝑟𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏  =  0.1 (Kumar et al. 2017). 
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