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The arrival time density of a ballistic particle (projected towards the turning point) is determined 
using a general form of Kijowski’s distribution. For given parameter values, two asymmetric 
peaks of the arrival time density are obtained, each arising respectively from the amplitudes 
for positive and negative momenta of the particle. These peaks represent the most probable 
arrival times before (for positive momentum) and after (for negative momentum) the classical 
arrival time. The features of the arrival time density such as its peaks and amplitude are shown 
to vary with the particle’s mass for a given initial position uncertainty.

INTRODUCTION
Quantum mechanics is a quantitative description of 
the wave-particle behavior of microscopic objects. Its 
postulates and conclusions are expressed in probabilistic 
terms. If one measures an observable Q for a given state Ψ 
of that object, quantum mechanics predicts the probability 
density ∏(Q) of measuring particular values of Q, and 
talks about the expectation value, correlations with other 
observables, and standard deviation of Q. It does not 
and cannot predict the outcome of a single measurement 
of Q. However, if one performs the same measurement 
repeatedly, using an ensemble of objects with identical 
states Ψ, the statistical picture that emerges must be 
consistent with the probability density ∏(Q).

This article poses the question: when does a quantum 
particle arrive at a given point? Consider a detector at 
some height z = zf and a ballistic particle confined along 
the vertical z-axis, prepared in some initial state and 
represented by a wave function in coordinate space, i.e. 

position amplitude Ψ(z, t i). The particle is measured by 
the detector at some later time t = tf . The arrival time 
at the detector is defined as T = tf − ti, but because of 
quantum indeterminacy we expect to find a probability 
density of different arrival times at the same arrival point 
zf which we refer to as the arrival time density ∏(T). The 
probability that the particle arrives at the detector in the 
time interval t1 < T < t2 is

Known results concerning the arrival time density ∏(T) 
are discussed in various review articles: Egusquiza et al. 
2002; Sokolovski 2008; Galapon 2009b, Ruschhaupt et al. 
2009; Wynands 2009. For a ballistic particle, why would 
it be significant?
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METHODS 

Arrival Time and the Weak Equivalence Principle
The arrival time density ∏(T) can re-examine a principle of 
physics called geometric weak equivalence. This principle 
states that the mass of a test particle under constant gravity 
is irrelevant in determining its future state of motion. 
There are alternate versions of the weak equivalence 
principle in relativity physics: (a) gravitational and inertial 
masses are equal, (b) the laws of motion of freely falling 
particles take the same form as in unaccelerated Cartesian 
coordinate systems in the absence of gravitation, and (c) 
any two test bodies must fall with the same acceleration 
in a given external gravitational field (Weinberg 1972; 
Misner et al. 1973). Geometric weak equivalence and its 
variants express the same physical meaning when applied 
to macroscopic objects, and are the starting points of the 
general theory of relativity.

Do these principles apply for microscopic particles? 
Testing the validity of the general theory of relativity in 
microscopic physics is currently an active area of research 
(Dimopoulos 2007). Fray et al. compared the gravitational 
acceleration g of the two atomic Rubidium isotopes 85Rb 
and 87Rb, obtaining a difference of Δg/g = (1.2 ± 1.7) × 
10−7. Peters et al. (1999) used an atom interferometer to 
achieve an absolute uncertainty of Δg/g ≈ 3×10−9. 

From a theoretical point of view an interesting analysis 
on geometric weak equivalence was made by Davies 
(2004). A particle projected upward can tunnel into the 
classically forbidden region above the turning point zTP. 
This tunneling depth depends on the mass m so a mass-
dependent quantum delay is expected. At present there is 
no universally accepted notion of tunneling time, i.e. the 
time spent by the particle inside the classically forbidden 
region (Landauer and Martin 1994). To measure this 
quantum delay, Davies used a Peres clock (Peres 1980). 
A Peres clock is an equally microscopic object, weakly 
coupled to the tunneling particle, with one degree of 
freedom: a rotor in an initial state with a well-defined 
pointer angle, running only when the particle traverses 
the space between two points of interest. 

Davies calculated the quantum delay at the turning point. 
It is approximately equal to 0.5(ħ/mg2)1/3 introducing a 
mass-dependent quantum correction to the classical arrival 
time of the tunneling particle. Such a delay represented 
a violation of geometric weak equivalence. This implies 
that geometric weak equivalence is not the same as the 
alternate formulations of weak equivalence – at least not 
microscopically.

The theoretical limitations of geometric weak equivalence 
in microscopic physics were also pointed out in previous 
work using entirely different approaches on the same 

problem: determining the arrival time behavior of 
microscopic ballistic particles released from a given 
initial mean height z0. This is the quantum version of the 
famous but apocryphal Pisa experiment by Galileo. Viola 
and Onofrio (1997) used stochastic mechanics to derive 
mass-dependent quantum fluctuations around the average 
arrival time. Ali et al. (2006) computed a mass-dependent 
mean arrival time (using the quantum probability current). 
Villanueva and Galapon (2010) obtained mass-dependent 
arrival time densities using two approaches: crossing 
states and generalized crossing states, the latter arising 
from a consideration of a time-of-arrival operator in 
the interacting case. In all three papers the quantum 
deviations from the classical arrival time showed up, but 
became negligible for large mass so that geometric weak 
equivalence was recovered.

This paper extends the previous work on the arrival time 
density of a particle influenced by a linear potential such 
as a constant gravitational field (Villanueva and Galapon 
2010). Investigation of ballistic particles is significant 
because freely falling atoms and atomic fountains have 
been realized experimentally, and a theoretical prediction 
can be tested with actual arrival time statistics. The 
author investigated the time evolution of a minimum 
uncertainty wave packet in the vicinity of the turning 
point, calculated its arrival time density, and determined 
that these properties exhibit mass dependence.

Kijowski’s Distribution
Using a standard quantum mechanical approach to the 
time-of-arrival problem, Egusquiza and co-workers 
obtained Kijowski’s distribution (Egusquiza et al. 2002),

     (T)  (T)  _ (T)   (1)

where

      

(2)

     

(3)

Kijowski’s distribution is the arrival time density of a 
free particle of mass m at the given arrival point z = zf 
where φ(p,T) is the wave function in momentum space, 
i.e. momentum amplitude of the free particle at time t=T. 
Recall that the momentum amplitude φ(p,T) and the 
position amplitude Ψ(z,T) are Fourier transforms of each 
other. Kijowski’s distribution depends the arrival time T, 
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the arrival point zf and the momentum amplitude φ(p,T). 
In a more compact notation, this paper will adopt

Kijowski’s distribution is an ideal arrival time density, i.e. 
the arrival time density is calculated without any reference 
to the manner of particle detection which is typically a 
highly specific interaction between the arriving particle 
and the detector, which absorbs the particle. Kijowski’s 
distribution also does not require an internal degree of 
freedom as a quantum clock (such as a Peres clock). Another 
attractive feature of Kijowski’s distribution is covariance 
with respect to time translations so that the arrivals predicted 
for a given fixed instant are independent of the choice made 
for the initial time.  In other words, ∏(T, zf, φ(p,0)) = ∏(T-
T’, zf, φ(p, T’)). Known results concerning the arrival time 
density ∏(T) are discussed in various review articles: 
Egusquiza et al. 2002; Sokolovski 2008; Galapon 2009b, 
Ruschhaupt et al. 2009; Wynands 2009.

The two terms on the RHS of expression (1) are interpreted 
as contributions to the arrival time density due to the 
momentum amplitude φ(p,T) for positive and negative 
momenta, respectively. Since classical particles with 
positive and negative momenta along the vertical z-axis 
can be alternatively identified as upward-moving and 
downward-moving particles respectively, a secondary 
physical interpretation has crept into the theory; namely 
that ∏+(T) is in addition to be also understood as the 
relative probability density of detecting the particle at 
time t = T from below of the arrival point zf, and ∏_(T) 
the relative probability density of detection at time t = T 
from above zf .

Two works (Baute et al. 2000; Baute et al. 2001)  
suggested a straightforward extension of Kijowski’s 
distribution when there is an interaction potential present 
by the replacement φ(p,T) → Φ(p,T) in expressions (2) 
and (3), where Φ(p,T) is the momentum amplitude of the 
particle under the influence of the interaction potential 
V(z) at time t = T. In this case, the arrival time density 
does not distinguish between first and subsequent arrivals 
and for this reason ∏(T) may not normalizable (but we can 
still compare relative arrival time probability densities). 
For instance, if the motion is periodic such as that of a 
harmonic oscillator, repeated arrivals at the same point at 
different times may occur.

Until quite recently, people generally agree on Kijowski’s 
distribution as the appropriate arrival time density for 
free particles (without internal degrees of freedom such 
as spin), but there is no consensus yet on a general theory 
in the interacting case (Muga and Leavens 2000). More 
elaborate theories entail the construction of a self-adjoint 
time-of-arrival operator defined on some interval on the 

real line (Galapon 2004; Galapon and Villanueva 2008; 
Galapon 2009a), or operator normalization with a highly 
specific detector model (Hegerfeldt et al. 2003; Hegerfeldt 
et al. 2004). 

Sombillo and Galapon (Sombillo and Galapon 2016) 
recently argued that the Kijowski distribution -- 
interpreted as the arrival time density of a free particle -- 
cannot reproduce both the temporal and the spatial profile 
of the modulus squared of the time-evolved wave function 
for an arbitrary initial state. In particular using a specific 
wave function  given to be zero at a certain point x 0 for all 
values of time, they showed that Kijowski’s distribution 
at x0 gives a non-vanishing arrival time probability if 
the wave function contains both positive and negative 
momentum components. In other words, Kijowski’s 
distribution cannot be regarded as a tenable arrival time 
distribution if the free particle contains both positive and 
negative momentum components. Inasmuch as the current 
object of interest is a particle subject to gravity, the weight 
of their objections must still be carefully considered.

 At this point a clarification of physical content of ∏+(T) 
and ∏−(T) seems a necessary preliminary step.  Can ∏+(T) 
and ∏−(T) retain the additional secondary interpretation of 
being relative arrival time densities for the particle coming 
from below and above zf, respectively, at time t = T? 

First, note that the positive momentum contribution ∏+(T) 
arise from the position amplitude Ψ(z, T) from both 
below as well as above the turning point zTP. Consider the 
complex-valued momentum amplitudes

      

(4)

       

(5)

where MCF(p, T) is the momentum amplitude due to the 
position amplitude Ψ(z,T) within the classically forbidden 
region, and MCA(p,T) is the corresponding momentum 
amplitude from the classically allowed region, with sum 
MCF(p,T) + MCA(p,T) = Φ(p,T). Second, the author defines 
the complex-valued arrival amplitudes

   

(6)
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(7)

which are amplitude contributions to the arrival time 
density (2) in the classically allowed (z < zTP) and 
classically forbidden regions (z > zTP) respectively. It 
seems natural to associate with A+

CA the amplitude for 
arrival from below, and A+

CF the amplitude for arrival 
from above the turning point zTP.. The arrival amplitudes 
A+

CA and A+
CF satisfy ∏+(T) =│A+

CA + A+
CF │

2  =│A+ CA│2 
+  2Re ((A+

CF)*A+
CA) + │A+ CF│

2 implying that ∏+(T) 
is actually a result of the interference between arrival 
amplitudes A+

CA and A+
CF. Recall that │z│2= z*z for any 

complex value z, where z* is the conjugate of z, and Re(z) 
is the real part of z. 

Hence ∏+(T) arises from contributions of the position 
amplitude Ψ(z, T) from below as well as from above 
the turning point zTP plus an interference term 2Re 
((A+

CF)*A+
CA) which is not guaranteed to be always 

positive. Therefore we cannot interpret ∏ +(T) as 
exclusively the relative arrival time density from below 
the turning point. In other words, ∏ +(T) is not related to 
the time exclusively spent by the particle in the classically 
allowed region z<zTP.

A similar negative conclusion can be made for ∏  -(T) 
(considered as the relative arrival density from above 
the turning point) by defining analogous arrival time 
amplitudes A−

CF(T) and A−
CA(T) for negative momenta so 

that ∏-(T) =│A-
CA + A-

CF │
2  =│A-

CA│2 +  2Re ((A-
CF)*A-

CA) + │A-
CF│

2 . Hence ∏  -(T) cannot be associated with the 
time spent by the particle inside the classically forbidden 
region (z>zTP), i.e. the tunneling time.

Minimum Uncertainty Wave Packet in a Constant 
Gravitational Field
Aside from the important question of whether or not 
geometric weak equivalence is valid on the microscopic 
level, a theoretical investigation of the arrival time 
behavior of particles in a constant gravitational field can 
be compared with the arrival time statistics of an atomic 
fountain experiment. In an atomic fountain, atoms are first 
stored and cooled in an optical trap. After preparation the 
atoms are given an initial push upwards by a laser pulse. 
Behaving as ballistic particles they arrive at the turning 
point zTP and later fall down into a detection region. 

The standard quantum mechanical treatment of a ballistic 
particle (the internal structure of which such as spin 
is ignored) can be conveniently done in terms of the 
Gaussian momentum amplitude Φ(p, t) (Robinett 1996; 
Robinett 2006)

        
(8)

where Φ0 is initial momentum amplitude

      
(9)

and m is the particle mass, g is the constant acceleration 
due to gravity, σ0 is the initial position uncertainty, p0 is the 
initial mean momentum, and z0 is the initial mean position. 
The momentum density │Φ(p,t)│2 = │Φ0(p + mgt)│2 does 
not spread out but translates to the left over time, and the 
mean momentum becomes zero at tCL which is the arrival 
time for a classical particle at the turning point zTP. The 
initial momentum amplitude (9) is the Fourier transform of 
the minimum uncertainty wave packet Ψ(x,0) with initial 
position uncertainty σ0, and initial mean position z0.  The 
momentum amplitude Φ(p,t) for negative momentum is 
exponentially small before t = t1 such that σp = p0 − mgt1 
where σp = ħ / 2σ0 is the initial momentum uncertainty. 
This is t1 = tCL – τ where τ = ħ / 2mgσ0. For the same 
consideration the momentum amplitude Φ(p,t) for positive 
momentum is exponentially small after t = t2 where t2 = 
tCL+ τ. Therefore 2τ is a time scale where the particle, 
initially projected upwards, changes momentum.

RESULTS AND DISCUSSION

Parameters
Experiments with atomic fountains typically use classical 
time-of-flight calculations. Under what conditions is 
a classical description justified? The spreading of the 
position density │Ψ(z,t)│2  where Ψ(z,t) is a Gaussian 
wave packet is a peculiar feature of quantum mechanics, 
and for a ballistic particle this spreading is described 
by the position uncertainty Δz = σ0 (1 + ħ2t2/4m2σ0

4)1/2 
(Robinett 1996). In terms of a ‘coherence time’ (Robinett 
2006) where t0 = 2mσ0

2/ħ, the spreading is negligible in the 
time scale that is small relative to t0. Hence if tCL is small 
compared to the coherence time, a classical time-of-flight 
calculation should be adequate.  In this paper, the author 
chose parameters (shown in Table 1) such that tCL is not 
small relative to t0. As seen in Figure 1, the spreading of 
the position density │Ψ(z,t)│2  is a dominant feature in 
this regime. 

According to Ehrenfest’s Theorem, the position 
expectation value < z(t) > of the ballistic particle satisfies 
the classical equation of motion with initial velocity v0 and 
initial position z0. Therefore, the initial mean momentum 
is chosen to be positive p0 > 0 so the position expectation 
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value < z(t) > initially rises from z0, reaches the classical 
turning point zTP at time t = tCL and subsequently accelerates 
downward. The initial mean velocity is v0 = p0/m = 0.1019 
cm/sec, and the particle’s mass is m = 10mCs where mCs 
= 2.903 × 106 (in atomic units) is the mass of the cesium 
atom. The chosen initial velocity v0 is comparable to 
those of cold atoms found in atomic fountain experiments. 
The classical arrival time at the turning point zTP is tCL = 

v0/g = 0.0001039 sec. As a consequence of Ehrenfest’s 
theorem, every ballistic particle that has the same initial 
mean velocity v0  and initial mean position z0  will have 
identical position expectation values < z(t) > at any time 
t>0.  In particular, < z(tCL) >= zTP . Since investigating the 
dependence of the arrival time density with the particle’s 
mass is the object of this paper, the author compared the 
arrival time densities of ballistic particles that differ in 
mass m1 and m2 and initial mean momenta (p0)1 and (p0)2 
respectively such that (p0)1/m 1 = (p0)2/m2 = v0 = 0.1019 
cm/sec (for the same initial mean position z0 = 0). 

Wave Packet Behavior
For t > 0 the position density │Ψ(z,t)│2 spreads out rapidly 
from the initial position density │Ψ(z,0)│2 (a very sharp 
and narrow Gaussian if shown in the scale of figure 1). 
This spreading of the wave packet is independent of the 
direction of the initial velocity v0, but depends on the 
particle’s mass (larger masses have smaller spreading).  
Wave packet spreading is caused by the interference among 
the momentum components of the wave function. The wave 
packet contains a range of different momenta (determined 
by the momentum uncertainty ∆p) and corresponding 
angular frequencies ω=p2/2mħ. Thus each p-component 
oscillates as exp(-iωt). The time-dependent phase relations 
between the p-components correspondingly change 
the regions of constructive and destructive interference 
which shape the wave packet. Around time t = tCL  there is 
noticeable penetration of the position density │Ψ(z,t)│2 into 
the classically forbidden region (z>1000 atomic units) as 
shown in Figure 1, up to approximately time t = 4tCL. The 
tunneling probability at time t is

Table 1. Parameters of the Ballistic Particle.

Parameter Physical significance Atomic units (a.u.) Metric (MKS)

z0 initial mean position 0 0

zTP classical turning point 1000 5.292 × 10-8 m

σ 0 initial position uncertainty 10 5.292 × 10-9 m

tCL classical arrival time at zTP 4.292 × 1012 1.039 × 10-4 s

t0 spreading time 2mσ0
2/ħ 2mσ0

2/ħ

2τ time scale for momentum change ħ /2mgσ0 ħ /2mgσ0

t1 Momentum amplitude φ(p,t) for positive 

momentum exponentially small for t>t1

tCL – τ tCL – τ

t2 Momentum amplitude φ(p,t) for negative  

momentum exponentially small for t<t2

tCL + τ tCL + τ

 v0 initial mean velocity 4.657 × 10-10 1.019 × 10-3 m/s

p0 initial mean momentum mv0 mv0

Figure 1. Position density │Ψ(z,t)│2 of a ballistic particle at 
different times: │Ψ(z, tCL)│2 (dot), │Ψ(z, 2tCL)│2 (dash), 
│Ψ(z, 3tCL)│2 (dash dot), and │Ψ(z, 4tCL)│2 (solid). The 
particle’s mass is m = 10mCs where mCs = 2.903 × 106 
in atomic units. Length z is in atomic units (a.u.). The 
turning point is zTP = 1000 a.u. The initial position density 
│Ψ(z,0)│2 is not included.
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(10)

and according to Figure 1 there is a significant probability 
for tunneling by the particle in the time interval 0 < t < 
4tCL. Figure 2 shows the mass dependence of the tunneling 
probability in the same time interval 0 < t < 4tCL. For larger 
masses (m>10mCs), the spreading is less pronounced, 
mitigating the penetration into the classically forbidden 
region, and therefore tunneling occurs in a shorter time 
interval. 

                    

(11)

representing the particle’s position probability in the vicinity 
of the detector at z = zTP (for a given σ0) , i.e. the detection 
probability. Figure 3 shows a comparison of the detection 
probability Pσ0(t) for the same set of particles considered 
in figure 2. The spread of the detection probability Pσ0(t) 
is approximately the time interval where particle detection 
at the turning point is significant. This time interval is 
comparatively short for larger masses. The plots of Ptunnel(t) 
and Pσ0(t) are asymmetric for small masses, and this 
asymmetry can be attributed to wave packet spreading. 
The position density │Ψ(z,t)│2  is broader as it descends 
from the turning point, so the “tail” of │Ψ(z,t)│2 will pass 
by the region of interest for a longer time, compared to the 
position density │Ψ(z,t)│2  as it ascends to the turning point.

Figure 2. Ratio t/tCL vs. tunneling probability Ptunnel (t) for different 
particle masses m = 10mCs (asterisk), m = 20mCs (circle) 
and m = 30mCs (diamond) where mCs = 2.903 × 106 (in 
atomic units).

For the given mass m = 10mCs, and in terms of tCL, we 
have t1 = 0.632tCL and t2 = 1.38tCL. This implies that, in 
figure 2 the tunneling probability in the time interval 0 
<t < 0.632tCL is attributable to the positive momentum 
components of the wave packet, while in the time interval 
0.632tCL < t < 1.38tCL the tunneling probability is due to 
both positive and negative components, and finally in 
the time interval t > 1.38tCL the tunneling probability is 
due to the negative momentum components. Analogous 
conclusions can be made for different masses for 
appropriate values of t1 and t2.   

For how long is particle detection at the turning point 
significant? Consider 

Figure 3. Ratio t/tCL vs. detection probability Pσ0 (t) for different 
particle masses m = 10mCs (asterisk), m = 20mCs (circle) 
and m = 30mCs (diamond) where mCs = 2.903 × 106 (in 
atomic units). 

Arrival Time Distribution
The arrival time density of a particle projected upwards 
is calculated using expressions (1), (2) and (3) where 
the momentum amplitude φ(p,T) → Φ(p, t) is given 
by expression (8). The calculation of the integral in 
expression (2) can be done exactly, using the identity
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(12)

provided Re(β) > 0 and Re(ν) >0, where Dν(z) is the 
parabolic cylinder function of order ν and Γ(z) is the 
Gamma function (Gradshteyn 2007). In this case ν=3/2 and

                                                 
(13)

      
(14)

The calculation of expression (3) is similar, differing only 
in the final analytic result from the sign of the argument 
of D−3/2(z).

The plot of ∏±(T) at the turning point is provided in Figure 
4 for the same set of masses considered in Figures 1 and 2. 
Since the physical interpretation of ∏±(T) as arrival time 
densities is being questioned if both positive and negative 
momentum components are significant (Sombillo and 
Galapon 2016), we restrict our results to time T <  t 1 for 
∏+(T). Recall that the momentum amplitude Φ(p,T) for 
negative momentum become exponentially small before 
time t1 = tCL - τ  where τ = ħ / 2mgσ0.  Note t1 increases 
as the particle’s mass increases, and it approaches tCL. If 
we consider five different masses (10mCs, 15mCs, 20mCs, 
25mCs and 30mCs) the minimum t1 is tplus = 0.0000657 sec 
equivalent to tplus = 0.632 tCL. In Figure 4A we compare the 

positive Kijowski’s distributions ∏+(T) for the same five 
masses which we interpret as the arrival time densities in 
the time interval 0 < T < 0.632 tCL. The peaks of the arrival 
time densities vary with the particle’s mass and appear to 
shift to the right (approaching the classical arrival time tCL) 
for increasing mass.  Similarly, for ∏−(T) we restrict our 
results to   time T >  t 2 where the momentum amplitude 
Φ(p,T) for positive momentum become exponentially 
small after time t2 = tCL + τ. Note t2 decreases as the 
particle’s mass increases, and it approaches tCL. For the 
same five masses previously considered (10mCs, 15mCs, 
20mCs, 25mCs and 30mCs) the maximum t2 is tminus = 
0.000142 sec equivalent to tminus = 1.38 tCL. In figure 4B 
we compare the negative Kijowski’s distributions ∏-(T) 
for the same five masses which we interpret as the arrival 
time densities in the time interval T > 1.38 tCL. The peaks 
of the arrival time densities again vary with the particle’s 
mass and appear to shift to the left for increasing mass.  

Let T = T±
peak be the time where ∏±(T) attains its 

maximum. The effect of the particle’s mass on the most 
probable arrival time T±

peak is shown in Figure 5, where 
the particle mass ratio m/mCs vs. the ratio of T±

peak with 
the classical arrival time tCL is plotted in the mass range 
10mCs < m < 30mCs. Quantum deviations of the most 
probable arrival time from the classical arrival time are 
apparent, and more pronounced for low particle mass 
m. For increasing mass, the most probable arrival time 
appears to slowly approach tCL. 

Figure 4A. ∏+(T) for different particle masses m = 10mCs (asterisk), 
m = 15mCs (box), m = 20mCs (circle), m = 25mCs (cross) 
and m = 30mCs (diamond) where mCs = 2.903 × 106 (in 
atomic units). 

Figure 4B. ∏−(T) for different particle masses m = 10mCs (asterisk), 
m = 15mCs (box), m = 20mCs (circle), m = 25mCs (cross) 
and m = 30mCs (diamond) where mCs = 2.903 × 106 (in 
atomic units). 
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Figure 5. Particle mass ratio m/mCs vs. T±
peak/tCL. The mass range is 

10mCs < m < 30mCs where mCs = 2.903 × 106 (in atomic 
units). T+

peak/tCL (circles) T−
peak/tCL (diamonds).

In Figure 5 the most probable arrival time T+
peak due to 

momentum amplitude Φ(p,T) for positive momentum 
is consistently less than the classical arrival time. This 
signifies an early arrival time, attributed to the momentum 
amplitude that produce the upper positive end of the 
momentum distribution |Φ(p, T)|2. As the penetration of 
the classically forbidden region at the time interval 0 < 
t < t1 is due to these positive momentum components, 
a tunneling particle may therefore arrive at the turning 
point earlier than the classical arrival time. For increasing 
particle mass m, T+

peak approaches the classical arrival 
time. Note these positive momentum components 
generally come from position amplitudes from below 
as well as above the turning point. Therefore T+

peak is not 
exclusively the time spent by the particle in the classically 
forbidden region, i.e. it is not a tunneling time. 

A quantum delay was also obtained given by T−
peak − 

tCL where T−
peak is due to the momentum amplitude for 

negative momenta. From the previous discussion, this is 
not the arrival time of the particle from above the turning 
point. Hence T−

peak − tCL is not exclusively the time spent 
by the particle in the classically forbidden region, i.e. T−

peak − tCL is also not a tunneling time.

CONCLUSION
The results in this paper show that, contrary to the classical 
case, ballistic particles with the same initial mean velocity 
v0 and initial mean position z0 behave in a manifestly mass-

dependent manner. The spreading of the wave packet is 
more pronounced for less massive particles. This in turn 
affects experimentally measurable quantities like the 
tunneling probability Ptunnel(t), the detection probability at 
the turning point Pσ0(t), and the arrival time density Π(T). 

For given parameter values, two asymmetric peaks of the 
arrival time density are obtained, each arising respectively 
from the amplitudes for positive and negative momenta 
of the particle. These mass-dependent peaks represent the 
most probable arrival times before and after the classical 
arrival time. The earlier arrival time peak is due to the 
positive momentum components of the wave packet. 
This implies the surprising result that a tunneling particle 
may arrive earlier than the classical arrival time.  These 
features of the arrival time density are shown to vary with 
the particle’s mass for a given initial position uncertainty, 
while remaining consistent with the quantum dynamics 
of a ballistic particle in the vicinity of the turning point.

With these results, the author concludes that geometric 
weak equivalence is not generally valid in a microscopic 
context. The variation of the tunneling probability, detection 
probability, and arrival time density with the particle’s 
mass suggests that novel physics may possibly be observed 
among quantum particles under constant gravity.
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