Optimization of Chlorophyll a Production of Some
Cyanobacteria from Rice Paddies in Manipur, India
Through Nutritional and Environmental Factors

Indrama Thingujam1*, Ojit Singh Keithellakpam1, Avijeet Singh Oinam1,
Gunapati Oinam1, Tiwari Onkar Nath1 and Sharma Gauri Dutt2

1National Repository for Cyanobacteria and Microgreen algae (Freshwater),
Microbial Resources Division, Institute of Bioresources and
Sustainable Development, Takyelpat, Imphal-795001, Manipur, India
2Department of Life Science and Bio-informatics, Assam University, Silchar, Assam, INDIA

Experiments were carried out to examine the production of chlorophyll a by cyanobacteria against various concentrations of nitrate, phosphate, pH and light qualities. It was observed that highest chlorophyll a was produced by Anabaena spiroides in 0N concentration of sodium nitrate followed by Phormidium arthurensis in 1½N concentration of sodium nitrate during 30th day of growth. Pertaining to the effect of phosphate, maximum chlorophyll a production was observed by Nostoc piscinale in 1½N followed by Nostoc muscorum in 2N concentration of dipotassium hydrogen phosphate during 30th day of growth. Photochromatic adaptation studies revealed that maximum chlorophyll a production was observed in Nostoc muscorum in white light (31.10 µg g-1) followed by red light (14.70 µg g-1) and blue light (8.53 µg g-1) during 30th day of growth. In green light, chlorophyll a production was minimum (4.85 µg g-1) during 30th day of growth. The strain Nostoc muscorum produced maximum chlorophyll a production at pH 8.0 (26.9 29 µg g-1), whereas Nostoc piscinale yielded maximum chlorophyll a at pH 8.5 (26.30 µg g-1). Nostoc muscorum showed comparatively higher chlorophyll a content at all pH values.

Key words: Chlorophylla, cyanobacteria, Indo-Burma, light qualities, nutrients, pH

Cyanobacteria are oxygenic photosynthetic prokaryotes that convert CO2 into organic biomass by means of photosynthesis. Their metabolic flexibility to adapt and to thrive in various ecological niches is remarkable and the optimal culture conditions of cyanobacteria are diverse among genera, species and strains (Pikuta et al. 2007; Singh 2009). A number of environmental factors control the growth of photosynthetic organisms in nature. The biochemical constituent of cyanobacteria depends on the nature of strains, physiological state of the culture and the environment (Vargas et al. 1998; Subhashini et al. 2003; Maslova et al. 2004; Rosales et al. 2005). Cyanobacteria take advantage of having different compositions of photopigments to   capture the available sunlight present in a particular ecological niche (Chen & Scheer 2013; Hou et al. 2013). . . . [Download FullText]

AGUILERA J, GORDILLO FJL, KARSTEN U, FIGUEROA FL, NIELL FX. 2000. Light quality effect on photosynthesis and efficiency of carbon assimilation in the red alga Porphyra leucosticte. J Plant Physiol 157: 86-92.
AIYER RS. 1965. Comparative algological studies in rice fields in Kerala state.   
Agric Res J Kerala 3(1):100-104.
Allen MM. 1984. Cyanobacterial cell inclusions. Annu Rev Microbiol 38:1-25.
Armstrong G, Apel K. 1998. Molecular and genetic analysis of light-dependent  
chlorophyll biosynthesis. Methods Enzymol 297: 723-744.
BADGER MR, PRICE GD. 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54: 609-622.
BANO A, SIDDIQUI PJA. 2004. Characterization of five marine cyanobacterial species with respect to their pH and salinity requirements. Pak J Bot 36: 133-143.
Bogorad L. 1975. Phycobiliproteins and complementary chromatic adaptation. Annu Rev Plant Physiol 26: 369-401.
BOSE P, NAGPAL US, VENKATARAMAN GS, GOYAl SK. 1971. Solubilization of tricalcium phosphate by blue green algae. Curr Sci 40: 165.
BUCK DP, SMITH GD. 1995. Evidence for a Na+/ H+ electrogenic antiporter in an alkaliphilic cyanobacterium Synechocystis. FEMS Microbiol Lett 128: 315-320.
BURJA AM, ABU-MANSOUR E, BANAIGS B, PYARI C, BURGESS JG, WRIGHT PC. 2002. Culture of marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae), for bioprocess intensified production of cyclic and linear lipopeptides. J Microbiol Methods 48: 207-219.
CELEKLI A, YAVUZATMACA M. 2009. Predictive modeling of biomass production by Spirulina platensis as function of nitrate and NaCl concentrations. Bioresour Technol 100: 1847-1851.
CHEN CY, DURBIN EG. 1994. Effects of pH on the growth and carbon uptake of  marine phytoplankton. Mar Ecol Prog Ser 109: 83-94.
CHEN M, SCHEER H. 2013. Expanding the limits of natural photosynthesis and  implications for technical light harvesting. J Porphyrins Phthalocyanines 17: 1-15.
DESIKACHARY TV. 1959. Cyanophyta, Indian Council of Agricultural Research, New Delhi, India. 616p.
DRING MJ. 1988. Photocontrol of development in algae. Ann Rev Plant Physiol Mol Biol 39: 157-174.
FAINTUCH BL. 1989. Ananlise comparativa da producao de biomass a apartir de tres cianobacterias empregando distintas fontes nitrogenadas. Master of Science Thesis, University of Sao Paulo, Brazil.
FIGUEROA FL, AGUILERA J, JIMENEZ C, VERGARA JJ, ROBLES MD, NIELL FX. 1995. Growth, pigment synthesis and nitrogen assimilation in the red alga Porphyra sp. (Bangiales, Rhodophyta) under blue and red light. Sci Mar 59: 9-20.
FIGUEROA FL, AGUILERA J, NIELL FX. 1995. Red and blue light regulation of   
growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). Eur J Phycol 30: 11-18.
Gerloff GC, Fitzeratd GP, Skoog F. 1950. The mineral nutrition of Coccochloris peniosystis. Am J Bot 37: 835-840.
GIRALDEZ-RUIZ N, MATEO P, BONILA I, FERNANDEZ-PINAS F. 1997. The relationship between intracellular pH, growth characteristics and calcium in the cyanobacterium Anabaena sp. strain PCC7120 exposed to low pH.  New Phytol 137: 599-605.
GITELSON  AA, LAORAWAT S, KEYDAN GP, VONSHAK A. 1995. Optical properties of dense algal cultures outdoors and its application to remote estimation of biomass and pigment concentration in Spirulina platensis. J Phycol 31: 828-834.
HERRERO A, MURO-PASTOR AM, FLORES E. 2001. Nitrogen control in cyanobacteria. J Bacteriol 183: 411-425.
HOU X, RAPOSO A, HOU HJ. 2013. Response of chlorophyll d-containing cyanobacterium Acaryochloris marina to UV and visible irradiations. Photosynth Res 117: 497-507.
JAIN A, CAO A, KARTHIKEYAN AS, BALDWIN JC, RAGHOTHAMA KG. 2005. Phosphate deficiency suppresses expression of light regulated psbO and psbP genes encoding extrinsic protein of oxygen-evolving complex of PS II. Curr Sci 89: 1592-1596.
KALLAS T, CASTENHOLZ RW. 1982a. Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth inhibiting low pH. J Bacteriol 149(1): 229-236.
Komarek J, Anagnostidis K. 2005. Cyanoprokaryota 2. Teil/ 2nd part:
Oscillatoriales. In: Susswasserflora von MitteleuropaI 19/2. Budel B, Krienitz L, Gartner G, Schagerl M eds. Heidelberg: Elsevier/Spektrum. p. 759.
Korbee N, Figueroa FL, Aguilera J. 2005. Effect of light quality on the
accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J Photochem Photobiol  B 80: 71-78.
KRATZ WA, MYERS J. 1955. Nutrition and growth of several blue-green algae.
Am J Bot 42: 282-287.
Lapointe BE. 1989. Macroalgal production and nutrient relations in oligotrophic areas of Florida Bay. Bull Mar Sci 44: 312-323.
LARNED ST. 1998. Nitrogen-versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae. Mar Biol 132: 409-421
LEVASSEUR M, THOMPSON PA, HARRISON PJ. 1993. Physiological acclimation
of marine phytoplankton to different nitrogen sources. J Phycol 29: 587-595.
LODI A, BINAGHI L, FAVERI DD, CARVALHO JCM, CONVERTI A. 2005. Fed-batch mixotrophic cultivation of Arthrospira (Spirulina) platensis (Cyanophyceae) with carbon source pulse feeding. Ann Microbiol 55: 181-185.
LUNING K, DRING MJ. 1985. Action spectra and spectral quantum yield of photosynthesis in marine macroalgae with thin and thick thalli. Mar Biol 87: 119-129.
MADHYASTHA HK, VATSALA TM. 2007. Pigment production in Spirulina fussiformis in different photophysical conditions. Biomol Eng 24: 301-305.
Markl H. 1977. CO2 transport and photosynthetic productivity of a continuous culture of algae.  Biotechnol Bioeng 19: 1851-1862.
MASLOVA IP, MOURADYAN EA, LAPINA SS, KLYACHKO-GURVICH GL, LOS DA. 2004. Lipid fatty acid composition and thermophilicity of cyanobacteria. Russian J Plant Physiol 51(3): 353-360.
MCkinney G. 1941. Absorption of light by chlorophyll solution. J Biol Chem
140: 315-322.
Miller MW, Hay ME, Miller SL, Malone D, Sotka EE, Szmant AM. 1999. Effects of nutrients versus herbivores on reef algae: A new method for manipulating nutrients on coral reefs. Limnol Oceanogr 44: 1847-1861.
MONTECHIARO F, HIRSCHMUGL CJ, RAVEN JA, GIORDANO M. 2006. Homeostasis of cell composition during prolonged darkness. Plant Cell Environ 29: 2198-2204.
MOSTERT ES, GROBBELAAR JU. 1987. The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures. Biomass13: 219-233.
Okuda A, Yamaguchi M. 1956b. Distribution of nitrogen-fixing microorganisms in paddy soils in Japan. VI Cong Int Sci Soil 521-526.
OLAIZOLA M, DUERR EO. 1990. Effect of light intensity and quality on growth
rate and photosynthetic pigment content of Spirulina platensis. J Appl Phycol  2: 97-104.
PIKUTA EV, HOOVER RB, TANG J. 2007. Microbial extremophiles at the limits of life. Crit Rev Microbiol 33: 183-209.
Prasad MN, Mehrotra RK, Singh Y. 1978. On pH tolerance of some soil blue-green algae. Acta Bot Ind 6(2): 132-138.
RAVEN JA, LUCAS WJ. 1985. Energy costs of carbon acquisition. In: Inorganic carbon uptake by aquatic phytosynthetic organisms. Lucas WJ, Berry JA eds. American Society of Plant Physiologists, Rockville. p. 305-324.
Riegman R, Mur LC. 1984. Regulation of phosphate uptake kinetics in Oscillatoria agardhii. Arch Microbiol 139: 28-32.

RIPPKA R, DERUELLES J, WATERBURY JB, HERDMAN M, STANIER RY. 1979. Generic assignments strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1-61.
RITCHIE RJ. 1991. Membrane potential and pH control in the cyanobacterium Synechococcus R-2 PCC7242. J Plant Physiol 137: 409-418.
RITCHIE RJ, TRAUTMAN DA, LARKUM AWD. 2001. Phosphate uptake in the cyanobacterium Synechococcus R-2 PCC 7942. Plant Cell Physiol 38: 1232-1241.
ROE S. 2001. Protein purification techniques: A practical approach. Oxford, UK: Oxford University Press.
Roger PA, Reynaud PA. 1979. Ecology of BGA in paddy fields. International Rice Research Institute. Nitrogen and Rice.  Los Banos, Philippines. p. 289-309.
ROSALES N, ORTEGA J, MORA R, MORALES E. 2005. Influence of salinity on the growth and biochemical composition of the cyanobacterium Synechococcus sp. Cienc Mar 31: 349-355.
SCHIRRMEISTER BE, ANTONELLI A, BAGHERI CH. 2011. The origin of multicellularity in cyanobacteria. BMC Evol Biol 11: 45.
SINGH DP. 2009. Some secrets of ubiquity in cyanobacteria. In: Algal biology and  biotechnology. Khattar JIS, Singh DP, Kaur G. eds. India: International Publishing House Pvt. Ltd. p. 57-62.
SINGH HN, SRIVASTAVA BS. 1968. Studies on morphogenesis. I. Effect of inorganic nitrogen sources on developmental morphology of Anabaena doliolum. Can J Microbiol 14: 1341.
STOWE-EVANS EL, KEHOE DM. 2004. Signal transduction during light-quality acclimation in cyanobacteria: a model system for understanding phytochrome-response pathways in prokaryotes. Photochem Photobiol Sci 3: 495-502.
STUMN W, MORGAN JJ. 1981. Aquatic chemistry, 2nd ed. John Wiley & Sons, New York.
SUBHASHINI R, KUMAR K, KANNAIYAN S. 2003. Intrinsic antibiotic resistance and biochemical characteristics of Anabaena-Azollae isolated from Azolla cultures. Indian J Microbiol 4:165-169.
Syrett PJ. 1981. Nitrogen metabolism of microalgae. Can Bull Fish Aquat Sci
TANDEAU DE MARSAC N 1997 Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 13: 82-91.
THOMPSON PA, LEVASSEUR ME, HARRISON PJ. 1989. Light limited growth
on ammonium vs nitrate: What is the advantage for marine phytoplankton?  
Limnol  Oceanogr 34: 1014-1024.
TSEKOS I, NIELL FX, AGUILERA J, FIGUEROA FL, DELIVOPOULOS SG. 2002. Ultrastructure of the vegetative gametophytic cells of Porphyra leucosticta (Rhodophyta) grown in red, blue and green light. Phycol Res 50: 251-264.
VARGAS MA, RODRIGUEZ H, MORENO J, OLIVARES H, DEL CAMPO JA, RIVAS J, GUERRERO MG. 1998. Biochemical composition and fatty acid content of filamentous nitrogen fixing cyanobacteria. J Phycol 34(5): 812-817.
WALSBY AE. 1982. Cell-water and cell-solute relations. In: The biology of cyanobacteria. Carr NG, Whitton BA. eds. Blackwell Science Publications, Oxford. p. 237-262.