Analysis of Pigment Composition of Brown Seaweeds
Collected from Panjang Island, Central Java, Indonesia

Heriyanto1,2, Ayu Dita Juliadiningtyas3, Yuzo Shioi1, Leenawaty Limantara1,4,
and Tatas Hardo Panintingjati Brotosudarmo1*

1Ma Chung Research Center for Photosynthetic Pigments, Ma Chung University,
Villa Puncak Tidar N-1, Malang-65151, Indonesia
2Deparment of Plant Physiology and Biochemistry, Jagiellonian University,
ul. Gronostajowa 7, 30-387 Krakow, Poland
3Faculty of Fisheries and Marine Science, Diponegoro University,
Jl. Prof. Soedarto Tembalang, Semarang-50275, Indonesia
4Center for Urban Studies, Universitas Pembangunan Jaya, Jl. Cendrawasih Raya B7/P,
South Tangerang-15413, Banten, Indonesia

*Corresponding author: This email address is being protected from spambots. You need JavaScript enabled to view it.


Composition of pigments from four species of brown seaweeds (Phaeophyceae) collected from Panjang Island, Central Java, Indonesia, was investigated with spectroscopic method and reverse-phase high-performance liquid chromatography (RP-HPLC). Identification of pigments was based on their spectral and chromatographic properties and also confirmed by electrospray ionization-mass spectrometry (ESI-MS/MS) analysis. The experimental results showed that concentrations of chlorophyll a (Chl a) and total carotenoids (Cars) from brown seaweeds, estimated by spectroscopic method, varied depending on species from 1.73 mg · g–1 to 8.84 mg · g–1 and from 0.55 mg · g–1 to 4.06 mg · g–1 dry weight (dw), respectively. In addition, the order of concentrations of Chl a and total Cars in four species of seaweed was as follows: Dictyota dentata > Padina australis > Sargassum crassifolium > Turbinaria conoides. This order was in agreement with the concentrations of dominant pigments calculated by HPLC method, i.e., fucoxanthin (Fuco) (0.43 mg · g–1 to 4.11 mg · g–1 dw), Chl a (1.70 mg · g–1 to 7.89 mg · g–1 dw), β-carotene (0.16 mg · g–1 to 0.78 mg · g–1 dw). These results suggest that D. dentata is likely potential source material to explore the industrial utilization, especially functional food and biomedical ingredients, of Fuco and Chl a.

Indonesia is well known as an archipelago country having abundant marine natural resources. One of them is seaweeds which are classified based on their pigmentation into brown, red and green seaweeds (Dawczynski et al. 2007). Brown seaweeds (Phaeophyceae) have not been optimally explored, although they have been recognized to have several beneficial effects on human health. In addition to sodium alginate, fucoxanthin (Fuco), the major marine carotenoid (Car), is a commercial importance in brown seaweeds. Fuco has demonstrated anti-inflammatory (Shiratori et al. 2005), anticancer (Kotake-Nara et al. 2001), and anti-obesity (Miyashita 2009) activities. . . . read more

AIRANTHI MK, HOSOKAWA M, MIYASHITA K. 2011. Comparative antioxidant activity of edible Japanese brown seaweeds. Journal of Food Science 76: C104-C111.
ATMADJA WS, KADI A, SULISTIDJO R. 1996. Pengenalan jenis-jenis rumput laut Indonesia [Introduction of types of Indonesian seaweeds]. Jakarta: Puslitbang Oseanografi-LIPI. [in Bahasa Indonesia].
BISCHOF K, GOMEZ I, MOLIS M, HANELT D, KARSTEN U, LUCLER U, ROLECLA MY, ZACHER K, WIENCKE C. 2006. Ultraviolet radiation shapes seaweed communities. Reviews in Environmental Science & Biotechnology 5:141-166.
BLANKENSHIP RE, MADIGAN MT, BAUER CE. 1995. Advances in Photosynthesis, Vol. 2: Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, London, 1331p.
BOCZAR BA, PREZELIN BB. 1989. Organization and comparison of chlorophyll-protein complexes from two fucoxanthin-containing algae: Nitzschia closterium (Bacillariophyceae) and Isochrysis galbana (Prymnesiophyceae). Plant and Cell Physiology 30:1047-1056.
BROTOSUDARMO THP, HERIYANTO, SHIOI Y, INDRIATMOKO, ADHIWIBAWA MAS, INDRAWATI R, LIMANTARA L. 2017. Composition of main dominant pigments from potential two edible seaweeds. Philippine Journal of Science (In Press).
COUSO I, CORDERO BF, VARGAS MA, RODR─║GUEZ H. 2012. Efficient heterologous transformation of Chlamydomonas reinhardtii npq2 mutant with the zeaxanthin epoxidase gene isolated and characterized from Chlorella zofingiensis. Marine Drugs 10:1955-1976.
DAWCZYNSKI C, SCHUBERT R, JAHREIS G. 2007. Amino acids, fatty acids, and dietary fiber in edible seaweed products. Food Chemistry 103:891-899.
DE QUIRÓS ARB, FRECHA-FERREIRO S, VIDAL-PÉREZ AM, LÓPEZ-HERNÁNDEZ J. 2010. Antioxidant compounds in edible brown seaweeds. European Food Research and Technology 231:495-498.
DHARGALKAR VK. 2004. Effect of different temperature regimes on the chlorophyll a concentration in four species of Antarctic macroalgae. Seaweed Research and Utilization 26:237-243.
HAUGAN JA, LIAAEN-JENSEN S. 1994. Carotenoid in brown algae (Phaeophyceae). Biochemical Systematics and Ecology 22:31-41.
HEGAZI MM, RUZAFA AP, ALMELA L, CANDELA ME. 1998. Separation and identification of chlorophylls and carotenoids from Caulerpa prolifera, Jania rubens and Padina pavonica by reversed-phase high-performance liquid chromatography. Journal of Chromatography 829:153-159.
HERIYANTO, LIMANTARA L. 2010. Photo-stability and thermo-stability studies on fucoxanthin isomerization. In Limantara, L., Heriyanto & Sadtono, E. (Eds.), Proceedings of NP-SEA, March 20-21, Malang, Indonesia. p. 73-78.
HERIYANTO, KARTINI Z, LIMANTARA L. 2010. Studi kandungan fukosantin lima jenis rumput laut cokelat di perairan Madura [Study on fucoxanthin content in five types of brown seaweed from Madura water] In Husni, A., Suadi & Istiqomah, I. (Eds.), Prosiding Seminar Nasional Tahunan VII Hasil Penelitian Perikanan dan Kelautan, Juli 24, Yogyakarta, Indonesia. p. 1-9. [in Bahasa Indonesia].
JAHNS P, LATOWSKI D, STRZALKA K. 2009. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochimica et Biophysica Acta 1787:3-14.
KOBAYASHI M, AKIYAMA M, KANO H, KISE H. 2006. Spectroscopy and structure determination. In Chlorophylls and Bacteriochlorophylls. Biochemistry, Biophysics, Functions and Applications: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (Ed.). Springer, Dordrecht, p. 79-93
KOSUMI D, KITA M, FUJII R, SUGISAKI M, OKA N, TAKAESU Y, TAIRA T, IHA M, HASHIMOTO H. 2012. Excitation energy-transfer dynamics of brown algal photosynthetic antennas. Journal of Physical Chemistry Letters 3:2659-2664.
KOTAKE-NARA E, KUSHIRO M, ZHANG H, SUGAWARA T, MIYASHITA K, NAGAO A. 2001. Carotenoids affect proliferation of human prostate cancer cells. Journal of Nutrition 131:3303-3306.
LE LANN K, FERRET C, VANMEE E, SPAGNOL C, LHUILLERY M, PAYRI C, STIGER-POUVREAU V. 2012. Total phenolic, size-fractionated phenolics and fucoxanthin content of tropical Sargassaceae (Fucales, Phaeophyceae) from the South Pacific Ocean: Spatial and specific variability. Phycological Research 60:37-50.
LICHTENTHALER HK. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148:350-382.
LIMANTARA L, HERIYANTO. 2010. Studi komposisi pigmen dan kandungan fukosantin rumput laut cokelat dari perairan Madura dengan kromatografi cair kinerja tinggi [Study on pigment composition and content of fucoxanthin in brown seaweed from Madura water using HPLC]. Indonesian Journal of Marine Sciences 15:23-32. [in Bahasa Indonesia].
MAOKA T, FUJIWARA Y, HASHIMOTO K, AKIMOTO N. 2002. Rapid identification of carotenoids in a combination of liquid chromatography/ UV-visible absorption spectrometry by photodiode-array detector and atmospheric pressure chemical ionization mass spectrometry (LC/PAD/ APCI-MS). Journal of Oleo Science 51:1-9.
MIYASHITA K. 2009. The carotenoid-fucoxanthin from brown seaweed affects obesity. Lipid Technology 21:186-190.
MULYADI NM, WIDYANINGSIH TD, WIJAYANTI N, INDRAWATI R, HERIYANTO, LIMANTARA L. 2017. Microencapsulation of kabocha pumpkin carotenoids. International Journal of Chemical Engineering and Applications. (In Press).
PORRA RJ, PFUNDEL EE, ENGEL N. 1997. Metabolism and function of photosynthetic pigments. In Phytoplankton Pigments in Oceanography: JEFFREY SW, MANTOURA RFC, WRIGHT SW (Ed.). UNESCO Publishing, Paris, p. 85-126.
SHIOI Y. 2006. Large scale chlorophyll preparations using simple open-column chromatographic methods. In Chlorophylls and Bacteriochlorophylls. Biochemistry, Biophysics, Functions and Applications: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (Ed.). Springer, Dordrecht, p. 124-131.
SHIRATORI K, OHGAMI K, ILIEVA I, JIN XH, KOYAMA Y, MIYASHITA K, YOSHIDA K, KASE S, OHNO S. 2005. Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Experimental Eye Research 81:422-428.
SIVAGNANAM SP, YIN S, CHOI JH, PARK YB, WOO HC, CHUN BS. 2015. Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Marine Drugs 13:3422-3442.
STIGER V, DESLANDES E, PAYRI CE. 2004. Phenolic contents of two brown algae, Turbinaria ornata and Sargassum mangarevense on Tahiti (French Polynesia): interspecific, ontogenic and spatio-temporal variations. Botanica Marina 47:402-409.
SUDHAKAR MP, ANANTHALAKSHMI JS, NAIR BB. 2013. Extraction, purification and study on antioxidant properties of fucoxanthin from brown seaweeds. Journal of Chemical and Pharmaceutical Research 5:169-175.
TERASAKI M, HIROSE A, NARAYAN B, BABA Y, KAWAGOE C, YASUI H, SAGA N, HOSOKAWA M, MIYASHITA K. 2009. Evaluation of recoverable functional lipid components of several brown seaweeds (Phaeophyta) from Japan with special reference to fucoxanthin and fucosterol contents. Journal of Phycology 45:974-980.