Hydrothermal Synthesis of Hierarchical Hematite (α-Fe₂O₃) Microstructures for Photocatalytic Degradation of Methyl Orange

Nick Joaquin Rapadas and Mary Donnabelle L. Balela

Sustainable Electronic Materials Group
Department of Mining, Metallurgical, and Materials Engineering
University of the Philippines Diliman, Quezon City 1101, Metro Manila, Philippines

Hematite (α-Fe₂O₃) hierarchical microstructures were prepared by a simple and inexpensive hydrothermal method using a mixture of FeCl₃ and Na₂SO₄ as precursors, followed by annealing at 400°C for 2 h. α-Fe₂O₃ microspheres with an average diameter of 1.07 µm were formed in the solution. Microrods with an average length of 0.46 µm were also observed on the surface of the microspheres, forming an urchin-like morphology. The amounts of Fe³⁺ and (SO₄)²⁻ in the solution significantly influence the morphology of the α-Fe₂O₃ urchin-like microstructures. An optimum amount of Fe³⁺ and (SO₄)²⁻ leads to the formation of urchin-like microstructures. The α-Fe₂O₃ microstructures successfully degraded methyl orange after 1 h of UV irradiation in the presence of a minute amount of hydrogen peroxide (H₂O₂). The α-Fe₂O₃ microstructures also exhibit excellent reusability and stability making it an ideal photocatalyst for wastewater treatment.

INTRODUCTION

The use of iron oxide nanomaterials, particularly hematite, is prevalent in various fields due to potential applications, such as gas sensing (Abe et al. 1997, Zhang et al. 2009), wastewater treatment (Hua et al. 2012), photocatalysis (Verhoeven 1996, Mishra & Chun 2015), photovoltaics (Gotić et al. 2011) field-emission (FE) devices (Hsu et al. 2011) and glucose sensing (De Mesa et al. 2011). Thus, different synthesis methods for iron oxide nanomaterials have been studied extensively. In particular, hematite (α-Fe₂O₃) nano and microstructures are promising photocatalysts. Substantial efforts have already been made to prepare α-Fe₂O₃ with various morphologies (Atabaev, 2015). Examples include nanowires (Chirita & Grozescu 2009), nanorings (Mohapatra & Anand 2010), hollow spheres (Yu et al. 2009), nanorods and capsules (Sun et al. 2012). The physical and chemical properties of α-Fe₂O₃ nano and microstructures are influenced by the morphology. Thus, much research has been focused on controlling the morphology, as well as in the fabrication of complex structures. For example, in hydrothermal synthesis, the morphology of the α-Fe₂O₃ microstructures is strongly affected by the presence of inorganic anions in the solution. By changing the concentration of inorganic anions, the shape and size of the α-Fe₂O₃ microstructures can be easily varied, without introducing any impurities in the product (Gotić et al. 2011).

Recently, the focus of photocatalytic applications has been on environmental remediation and water splitting applications. Photocatalysts are employed to degrade harmful organic substances using UV and visible light (Gotić et al. 2011). Various industries, such as textile,
leather goods, food, polymers, and cosmetics make use of organic compounds, which then becomes pollutants when discarded as wastewater. Most of these organic pollutants consist of dyes which have been proven to be carcinogenic. Consequently, the removal of these pollutants through photodegradation is of distinct importance (Guo et al. 2011). Different metal oxides e.g., titanium oxide (TiO$_2$), zinc oxide (ZnO), tin oxide (SnO$_2$) and α-Fe$_2$O$_3$, are found to effective in degrading organic pollutants under UV and visible light. Compared to these oxides, α-Fe$_2$O$_3$ offers several advantages, such as abundance, ease of preparation, narrow band gap, and excellent chemical stability under irradiation (Liu et al. 2015).

In this work, the formation of hierarchical α-Fe$_2$O$_3$ microstructures by hydrothermal method is presented. The effects of the concentration of the reactants i.e., FeCl$_3$ and Na$_2$SO$_4$, in controlling the morphology of the resulting microstructures are investigated. The efficacy of the as-prepared α-Fe$_2$O$_3$ microstructures in the photocatalytic degradation of methyl orange – in the presence of a small amount of hydrogen peroxide – is also examined.

MATERIALS AND METHODS

Hydrothermal Synthesis of Hematite Microstructures

Hematite microstructures were prepared based on the work of Agarwala et al. 2012, with minor modifications in the drying temperature (60-80°C) and annealing ramp rate (1-2°C min$^{-1}$). In a typical experiment, 2 mmol iron chloride (FeCl$_3$, 6H$_2$O, Sigma Aldrich, 99.99%) and 2 mmol sodium sulfate (Na$_2$SO$_4$, Sigma Aldrich, 99.99%) were added into 40 mL deionized water and stirred until totally dissolved. The solution was heated in an autoclave at 120°C for 6 h and then cooled to room temperature. The products were collected by centrifugation and washed with de-ionized (DI) water and ethanol several times and later dried in air at 80°C C for 2 h. The as-prepared powder was annealed in air at 400°C C for 2 h with a ramp-rate of 2°C C min$^{-1}$ to convert to α-Fe$_2$O$_3$.

To determine the effect of the concentration of Fe$^{3+}$ and SO$_4^{2-}$ ions on the morphology of the microstructure, various samples with different concentrations of FeCl$_3$ and Na$_2$SO$_4$ were made while keeping the concentration of either FeCl$_3$ or Na$_2$SO$_4$ constant. The concentrations of the synthesized samples are shown below:

<table>
<thead>
<tr>
<th>Concentration of FeCl$_3$</th>
<th>Concentration of Na$_2$SO$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mmol</td>
<td>2 mmol (1:1 Ratio)</td>
</tr>
<tr>
<td>2 mmol</td>
<td>Sample A</td>
</tr>
<tr>
<td>3 mmol</td>
<td>Sample B</td>
</tr>
<tr>
<td>4 mmol</td>
<td>Sample C</td>
</tr>
</tbody>
</table>

Characterization of Hematite Microstructures

The morphology of the microstructures was observed using a scanning electron microscope (SEM, Hitachi TM 1000, Jeol JSM-5310). The mean diameters of the microstructures and the length of the microrods were estimated by measuring 100 individual spheres and rods from several SEM images using Image Analysis and Processing in Java (ImageJ) software. X-ray diffraction (XRD, Shimadzu 7000) was used to analyze the crystal structure and phase composition of the product using Cu Kα radiation.

Photocatalytic Degradation of Methyl Orange

The photocatalytic properties of the synthesized α-Fe$_2$O$_3$ microstructures were determined through the time-dependent photocatalytic degradation of methyl orange (MO), 30 mg of the α-Fe$_2$O$_3$ microstructures were added to 30 mL of 5 ppm MO solution. The solutions were then magnetically stirred in the dark for 30 min to allow equilibrium to occur. After stirring, 0.15 ml of H$_2$O$_2$ (J. Chemie, 3% USP 10 vol) was added to the MO and α-Fe$_2$O$_3$ solution. Photocatalytic degradation of 5 ppm MO was then performed by irradiation under 30 W UV lamp at specific time intervals (0, 15, 30, 45, 60, 75, 90 min). The degradation of MO was investigated by determining the change in the absorbance of the 5 ppm MO solution at the peak (~465 nm) for every time interval using UV-visible spectrophotometer (UV-VIS, Shimadzu UV-1700 PharmaSpec).

RESULTS AND DISCUSSION

Effects of Na$_2$SO$_4$ and FeCl$_3$ Concentration on the Formation of Hematite Microstructures

The effect of Na$_2$SO$_4$ concentration on the morphology of the α-Fe$_2$O$_3$ microstructures was first investigated. The amount of FeCl$_3$ was kept constant at 2 mmol and all other experimental parameters like temperature and reaction time were also kept constant. On the other hand, the concentration of Na$_2$SO$_4$ was varied from 1, 2, and 4 mmol. Figure 1 shows the SEM images of α-Fe$_2$O$_3$ microstructures at increasing (SO$_4^{2-}$) ion concentration. When 1 mmol Na$_2$SO$_4$ was added, clusters of microrods with an average length of 0.56 ± 0.04 µm were formed.
It is apparent from the high magnification SEM image in Fig. 1b that these microrods grew from a single microsphere with a mean diameter of about 0.35 ± 0.02 µm. This microsphere possibly serves as nucleation point for the microrods. At higher magnification, some microrods also appeared to be loose aggregates as seen in Fig. 1b.

At 2 mmol Na₂SO₄, hierarchical microstructures with urchin-like morphology (Fig. 1c and d) were produced. The microspheres, which acted as seed for the growth of the microrods, have an average diameter of 1.07 ± 0.03 µm. On the other hand, the mean length of the microrods decreases to about 0.46 ± 0.03 µm. Increasing the Na₂SO₄ concentration to 4 mmol formed larger microspheres with similar urchin-like morphology (Fig. 1e and f). The average diameter of these structures is around 2.38 ± 0.01 µm. However, the microrods comprising the urchin-like structures decrease in length, with an average length of 0.42 ± 0.03 µm.

On the other hand, the effect of FeCl₃ concentration on the morphology of the product was also studied. The amount of Na₂SO₄ was kept constant at 2 mmol and all other experimental parameters like temperature and reaction time were also kept constant. The FeCl₃ concentration was changed from 2, 4, and 12 mmol. Figure 2 shows the SEM images of hematite microstructures formed by hydrothermal synthesis with 2, 4, and 12 mmol FeCl₃ concentration at a constant Na₂SO₄ concentration of 2 mmol. Addition of 2 mmol FeCl₃ generated large microspheres with an urchin-like morphology (Fig. 2a and b). This powder was prepared at the same condition as the sample shown in Fig. 1c and d. The microspheres...
have an average diameter of 1.07 ± 0.03 µm, while the nanorods with an average length of 0.46 ± 0.03 µm. Both the 4 and 12 mmol FeCl$_3$ concentrations formed only clusters of microrods with an average length of 0.40 ± 0.03 µm. Compared to the urchin-like particles in Fig. 2a-b, the microrods do not appear to grow from a spherical seed.

Based on the SEM images in Fig. 1 and 2, it is obvious that both Fe$^{3+}$ and (SO$_4^{2-}$) concentrations significantly influenced the morphology of the hematite microstructures. During hydrothermal reaction Fe$^{3+}$ ions are hydrolyzed to form the intermediate phase FeOOH (Xie et al. 2009, Zeng et al. 2010, Agarwala et al. 2012). This material serves as the precursor for the formation of hematite. At the early stages of the hydrothermal reaction, FeOOH nucleates in the solution and subsequently agglomerates to form large microspheres (Xie et al. 2009, Zeng et al. 2010, Agarwala et al. 2012). Due to the acidic nature of the solution, Fe$^{3+}$ ions are drawn towards the surface of the nuclei, which then leads to the attraction of (SO$_4^{2-}$) ions. The alternate adsorption of Fe$^{3+}$ and (SO$_4^{2-}$) ions results to the formation of the Fe-O-SO$_4$-O-Fe bidentate structure, which attaches on the surface parallel to the c-axis of the FeOOH nuclei.

Figure 2. SEM images showing the morphology of the hierarchical hematite microstructures formed at a,b) 2 mmol; c,d) 4 mmol; and e,f) 12 mmol Fe$^{3+}$ ion concentration at 10,000X and 20,000X magnification with SO$_4^{2-}$ ion concentration held constant at 2 mmol.
(Xie et al. 2009, Zeng et al. 2010, Agarwala et al. 2012). Subsequently, the microrods are grown. Finally, the FeOOH nuclei with the bidentate branches are converted to hematite urchin-like microstructures after the subsequent annealing of the collected powder. It is known that (SO$_4$)$_2^-$ ions strongly complexes with Fe$^{3+}$ (Xie et al. 2009, Zeng et al. 2010, Agarwala et al. 2012). When low amounts of (SO$_4$)$_2^-$ ions are present in the solution, the nucleation of the FeOOH is possibly slower, leading to smaller microspheres (Xie et al. 2009, Zeng et al. 2010, Agarwala et al. 2012). This then favors the formation of the Fe-O-SO$_2$-O-Fe bidentate structure and the subsequent growth of the microrods. As a result, longer microrods are present on the surface of the microspheres as seen in Fig. 1a and b. Increasing the (SO$_4$)$_2^-$ ion concentration promotes the precipitation of FeOOH, which produces larger and more defined microspheres. As a consequence, the length of the microrods noticeably decreases from 0.56 ± 0.04 µm to 0.42 ± 0.03 µm as amount is increased from 1 mmol Na$_2$SO$_4$ to 4 mmol Na$_2$SO$_4$. On the other hand, it is possible the hydrolysis reaction and subsequent formation of FeOOH is slowed down at higher amount of Fe$^{3+}$ ions (Xie et al. 2009, Zeng et al. 2010, Agarwala et al. 2012). This condition is advantageous for the oriented growth of the microrods as time is needed for the formation of the Fe-O-SO$_2$-O-Fe bidentate structure.

Photocatalytic Degradation of Methyl Orange

The various morphologies of the hematite samples used in the photodegradation experiments are shown in Figure 3. The samples represent small, medium, and relatively larger sized hematite microstructures to elucidate the effect of morphology on the photocatalytic activity of the microstructures. The photocatalytic activity of these hematite microstructures for methyl orange (MO) degradation was evaluated in the presence of a very small amount of H$_2$O$_2$. Figure 4 shows the UV-Vis absorption spectra of methyl orange, with hematite microstructures (sample A) and H$_2$O$_2$ only, and H$_2$O$_2$ with the different hematite microstructures after exposure to UV light for 1 h. The methyl orange solution registered an absorbance peak at around 465 nm as seen in Fig. 4a. For all other samples, no significant peak shift or presence of any other peak was observed, indicating that the solution collected after UV irradiation remained methyl orange. After 1 h UV irradiation with hematite only (sample A), the UV-Vis peak was unchanged as shown in Fig. 4b. This suggests that no photodegradation of methyl orange occurred. In the presence of minute amount of H$_2$O$_2$, a significant decrease in absorbance of about 57% can be observed even without the presence of hematite (Fig. 4c). This can be attributed to the generation of hydroxyl radicals when H$_2$O$_2$ is exposed to UV light (Yu et al. 2009).

Figure 3. SEM images showing the morphology of hematite microstructures used for photocatalytic degradation of methyl orange (a) A, (b) B, and (c) C at 10,000X magnification.

Figure 4. UV-Vis absorption spectra of (a) methyl orange, (b) methyl orange with hematite sample A only, (c) methyl orange with H$_2$O$_2$ only, (d) methyl orange with H$_2$O$_2$ and hematite sample A, (e) methyl orange with H$_2$O$_2$ and hematite sample B, and (f) methyl orange with H$_2$O$_2$ and hematite sample C after exposure to UV light for 1 h.
Then again, an almost complete photodegradation of methyl orange was observed when both hematite microstructures and H₂O₂ were present in the solution (Fig. 4d-f). The increase in the photocatalytic activity can be explained by the following mechanism. Due to UV irradiation, α-Fe₂O₃ generates electron-hole pairs. The photogenerated electrons are ejected from the valence band of α-Fe₂O₃ to its conduction band, leaving behind a hole in the valence band (Equation 1).

$$\text{Fe}_2\text{O}_3 \rightarrow \text{Fe}_2\text{O}_3(e_{cb}^-, h_{vb}^+) \quad (1)$$

The photogenerated electrons may either: (a) react with H₂O₂ to form highly reactive hydroxyl (OH) radicals (Yu et al. 2009),

$$e_{cb}^- + \text{H}_2\text{O}_2 \rightarrow \text{OH}^- + \cdot\text{OH} \quad (2)$$

or (b) react with the surface of the catalyst (Fe³⁺) to produce Fe²⁺, which will further react with H₂O₂ to generate the Fenton’s reagent (Yu et al. 2009).

$$\text{Fe}^{3+} + e_{cb}^- \rightarrow \text{Fe}^{2+} \quad (3)$$

$$\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \cdot\text{OH}^- + \cdot\text{OH} \quad (4)$$

The generation of highly reactive hydroxyl (OH) radicals in Equation 2 and 4 are able to degrade the methyl orange dye into non-toxic organic compounds due to their strong oxidizing ability (Yu et al. 2009, Liu et al. 2015). However, Equation 3 and 4 indicates that the reaction is highly likely to start on the surface of the hematite microstructures, starting with the reduction of Fe³⁺ to Fe²⁺, which is then released into the solution. The free Fe²⁺ ions will then react with the H₂O₂, to form the Fenton’s reagent which serves as a trigger for the photocatalytic degradation of the methyl orange (Araujo et al. 2011). The Fenton reaction is considered to be a potent advanced oxidation process for wastewater treatment and is used to destroy organic compounds (Yu et al. 2009).

Figure 5 shows the photocatalytic activity of hematite microstructures in the presence of H₂O₂ with increasing irradiation time. A plot for H₂O₂ alone is also shown. Co and C are the initial and actual concentration of methyl orange after UV irradiation, respectively. The photocatalytic activity of methyl orange after UV irradiation, respectively. The pseudo first order rate constant (k) of methyl orange with only H₂O₂, and H₂O₂ with hematite samples A, B, and C, under UV irradiation was calculated to be about 0.0265, 0.0499, 0.0577, and 0.0563 min⁻¹, respectively. The photocatalytic activity of the hematite samples (A, B, C) were found to be significantly higher than the activity of H₂O₂ alone based on the calculated rate constants. With hematite sample A, B, and C having more than 46.89%, 54.07%, and 52.93% increase in photocatalytic activity compared to H₂O₂ alone, respectively.

Hematite sample B was found to be slightly higher than sample C in terms of photocatalytic activity, with sample A being the least active. Sample A lags behind the two microstructures since it is composed of clusters of microrods that may have assembled together to form loose aggregates, therefore it lacks the hierarchical microstructure present in samples B, and C. The urchin-like structures of samples B and C may have more efficient means of transport for the electrons to move to the active sites on the surface, thus leading to an improved efficiency for the photocatalytic reactions. The high photocatalytic activity of sample B may be attributed to its high surface area and smaller size compared to sample C which has a significantly bigger diameter (Yu et al. 2009).

Figure 6 shows the XRD pattern of the hematite microstructures before and after 5 cycles of use in the complete degradation of MO. Both XRD patterns shows major peaks at $2\theta = 33.2^\circ$, 35.66 $^\circ$, 54.14, and 64.08$^\circ$. These peaks correspond to the 104, 110, 116, and 300 peaks of α-Fe₂O₃. The minor peaks of α-Fe₂O₃ are found at $2\theta = 24.16^\circ$, 40.9$^\circ$, 49.52$^\circ$, 57.66$^\circ$, and 62.5$^\circ$. These minor peaks correspond to 012, 113, 024, 018, and 214 peaks respectively. All the diffraction peaks in both patterns can be indexed to the standard diffraction pattern of a rhombohedral α-Fe₂O₃ (hematite, JCPDS no. 33-0664), indicating that the product is pure hematite without the presence of any impurities. Even after 5
cycles of use, the α-Fe$_2$O$_3$ peaks remain unchanged as seen in Fig. 6b. No other phases were formed. Overall, the hematite microstructures formed in this study can be considered as an ideal photocatalyst due to its distinct degradation of the methyl orange dye, its photostability and reusability. The presence of H$_2$O$_2$ in the system will enhance the effectiveness of the hematite catalyst through the Fenton reaction. Additionally, H$_2$O$_2$ can be easily degraded by the aqueous couple Fe$^{2+}$/Fe$^{3+}$, which eliminates issues of H$_2$O$_2$ contamination (Guo et al. 2011). The catalysts can also be used in the industrial scale since they can be separated more easily from the slurry system through filtration or sedimentation after treatment due to their larger weight/size, and weaker Brownian motion when compared to conventional powders of micro-sized photocatalytic materials (Araujo et al. 2011).

CONCLUSIONS

Hematite (α-Fe$_2$O$_3$) microstructures were successfully formed using only FeCl$_3$ and Na$_2$SO$_4$ as precursors, with the use of low temperature hydrothermal synthesis and an annealing process at 400° C. In the formation of the hematite microstructures, the amounts of Fe$^{3+}$ and (SO$_4$)$^{2-}$ ions significantly influenced the resulting morphology and size. Furthermore, the photocatalytic activity of the hematite microstructures could be adjusted by tailoring its morphology. The prepared hematite microstructures show significant photocatalytic activity for the degradation of methyl orange. The H$_2$O$_2$ treatment only yielded a photocatalytic reaction rate of 0.0265 min$^{-1}$ while the urchin-like hematite microstructure with the highest photocatalytic activity yielded 0.0577 min$^{-1}$, signifying a 54.07% increase in photocatalytic activity compared to H$_2$O$_2$ treatment alone. The outstanding photocatalytic properties of the urchin-like hematite microstructures could be attributed to their morphology, where it provides more efficient active sites. Consequently, there is an increase in electron transport properties, thus leading to an improved efficiency for the photocatalytic reactions. The hematite microstructures showed excellent stability and reusability after 5 cycles of complete degradation of methyl orange.

ACKNOWLEDGMENT

The project is partially funded by the University of the Philippines System under the Office of the Vice-President for Academic Affairs for the Emerging Interdisciplinary Research (OVPAA-EIDR-C06-032). The authors wish to thank Mr. Luigi Dahonog for the assistance in editing this manuscript.

Conflict of Interest

The authors have no conflict of interest.

REFERENCES

